Tìm x biết ( x - 3 ) ( x 2 + 3 x + 9 ) + x ( x + 2 ) ( 2 - x ) = 0 .
tìm x biết (x-3)^3-(x-3)(x^2+3x+9)+9(x^2+1)
bn ơi mk rất mún giải hộ pạn nhưng mk k bít để giải xin lỗi pạn nhìu
k mk nhé
1. Tìm X, biết: x - \(\dfrac{2}{3}\) x ( X + 9 ) = 1
2. Tìm X, biết: X - \(\dfrac{11}{15}\) = \(\dfrac{3+X}{5}\)
\(1.x-\dfrac{2}{3}\times\left(x+9\right)=1\)
\(x-\dfrac{2}{3}\times x-6=1\)
\(x\times\left(1-\dfrac{2}{3}\right)=7\)
\(x\times\dfrac{1}{3}=7\)
\(x=21\)
\(2.x-\dfrac{11}{15}=\dfrac{3+x}{5}\)
\(\dfrac{15x}{15}-\dfrac{11}{15}=\dfrac{9+3x}{15}\)
\(15x-11=9+3x\)
\(12x=20\)
\(x=\dfrac{5}{3}\)
Tìm x biết (x-1)^3-(x+3)(x^2-3x+9)+3(x-2)(x+2)=0
\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=0\)
\(\Leftrightarrow3x=40\)
hay \(x=\dfrac{40}{3}\)
Tìm x biết:
a) ( x – 3 ) 3 – ( x – 3 ) ( x 2 + 3 x + 9 ) + 9 ( x + 1 ) 2 = 15;
b) x(x – 5)(x + 5) – (x + 2)( x 2 - 2x + 4) = 3.
a) Rút gọn VT = 45x + 8. Từ đó tìm được x = 2 15 .
b) Rút gọn VT = -25x – 8. Từ đó tìm được x = − 11 25 .
Bài 2: Tìm x biết:
1,x\(^2\)+4x+4=25
2,(5-2x)\(^2\)-16=0
3,(x-3)\(^3\)-(x-3)(x\(^2\)+3x+9)+9(x+1)\(^2\)=15
4,3(x+2)\(^2\)+(2x-1)\(^2\)-7(x-3)9x+3)=36
5,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
6,(2x+1)\(^2\)-4(x+2)\(^2\)=9
7,(x+3)\(^{^{ }2}\)-(x-4)(x+8)=1
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
tìm x biết (x+3)(x^2-3x+9)-x(x^2-9)=27
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-9\right)=27\\ x.x^2-x.3x+x.9-x.x^2+x.9=27\\ x^3-3x^2+9x-x^3+9x=27\\ 3x^2+18x=27\\ 21x^2=27\\ x^2=\dfrac{9}{7}\\ \Rightarrow x=\sqrt{\dfrac{9}{7}}\)
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-9\right)=27\\ x.x^2-x.3x+x.9+3.x^2-3.3x+3.9-x.x^2+x.9=27\\ x^3-3x^2+9x+3x^2-9x+27-x^3+9x=27\\ 9x+27=27\\ 9x=0\\ x=0\)
tìm x, biết :
d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
e) (x + 1)^3 - (x - 1)^3 - 6(x - 1)^2 = -19
d. (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1
<=> x3 - 9 + (x2 + 2x)(2 - x) = 1
<=> x3 - 9 + 2x2 - x3 + 4x - 2x2 = 1
<=> 4x = 10
<=> x = \(\dfrac{10}{4}=\dfrac{5}{2}\)
d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
\(<=> x^3-27-x(x^2-4)=1\)
\(<=> x^3-27-x^3-4x=1<=>-4x=28<=> x=-7\)
=> ptrình có tập nghiệm S={-7}
e) (x + 1)^3 - (x - 1)^3 - 6(x - 1)^2 = -19
\(<=> x^3+3x^2+3x+1-(x^3-3x^2+3x-1)-6(x^2-2x+1)+19=0\)
\(<=>x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(<=>12x=15<=>x=12/15 \)
=> ptrình có tập nghiệm S={12/15}
tìm x biết
a)(x+3)(x^2-3x+9)-x(x-2)^2=27
b) (x-1)(x-5)=3
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)^2=27.\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-27=0.\)
\(\Leftrightarrow x^3-x^3+4x^2-4x=0.\)
\(\Leftrightarrow4x\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0.\\x-1=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0.\\x=1.\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}.\)
Tìm x biết
x^3 + 6x^2 +12x= 19
5(x + 9)^2(x - 4)^3 - 10(x + 9)^3(x - 4)^2 = 0
(2x + 3)^2 + (x - 2)^2 - 2(2x +3 )(x - 2)
`Answer:`
a. \(x^3+6x^2+12=19\)
\(\Leftrightarrow x^3+6x^2+12x-19=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)
Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)
\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)
\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)
\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)
c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(2x+3-x+2\right)^2\)
\(=\left(x+5\right)^2\)
A=(x/x+3 - 2/x-3 + x^2-1/9-x^2):(2- x+5/3+x)
a;rút gọn biểu thức A
b;tìm A biết |x|=1
c;tìm x biết a=1/2
d; tìm các giá trị thuộc z để a thuộc giá trị nguyên
a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))
\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)
\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)
\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)
\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)
\(A=\dfrac{-5}{x-3}\)
b) Ta có: \(\left|x\right|=1\)
TH1: \(\left|x\right|=-x\) với \(x< 0\)
Pt trở thành:
\(-x=1\) (ĐK: \(x< 0\))
\(\Leftrightarrow x=-1\left(tm\right)\)
Thay \(x=-1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)
TH2: \(\left|x\right|=x\) với \(x\ge0\)
Pt trở thành:
\(x=1\left(tm\right)\) (ĐK: \(x\ge0\))
Thay \(x=1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)
c) \(A=\dfrac{1}{2}\) khi:
\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10=x-3\)
\(\Leftrightarrow x=-10+3\)
\(\Leftrightarrow x=-7\left(tm\right)\)
d) \(A\) nguyên khi:
\(\dfrac{-5}{x-3}\) nguyên
\(\Rightarrow x-3\inƯ\left(-5\right)\)
\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)
a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)
\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)
\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)
\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)
b: |x|=1
=>x=-1(loại) hoặc x=1(nhận)
Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)
c: A=1/2
=>x-3=-10
=>x=-7
d: A nguyên
=>-5 chia hết cho x-3
=>x-3 thuộc {1;-1;5;-5}
=>x thuộc {4;2;8;-2}