Cho hệ phương trình có tham số m: m x + y = m x + m y = m .
Hệ vô nghiệm khi:
A. m = 0
B. m = 1
C. m = -1
D. với mọi m ∈ ℝ .
Cho hệ phương trình: 2X +Y = 3m-2 ( m là tham số ) X - Y = 5 a) Giải hệ phương trình khi m = - 4 ; b) Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn: x + y = 13.
cho hệ phương trình x+my=3m
mx-y=m2-2 ( m là tham số)
a. giải phương trình với m=-1
b. tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn (x-1)(m-y),0
a: Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)
Em nên chèn bằng công thức nhé, chứ em viết thế này cô không hiểu đúng đề bài em cần được để trợ giúp em đâu
Cho hệ phương trình :\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\)(m là tham số)
Tìm tất cả các giá trị của tham số m để hệ phương trình đã cho có nghiệm (x,y) thoả x>0,y<0
\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)
Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)
\(\Leftrightarrow m>-5\) (1)
Để \(y>0\) \(\Leftrightarrow40-6m< 0\)
\(\Leftrightarrow m>\dfrac{20}{3}\) (2)
\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)
Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)
cho hệ phương trình : x+my=m+1
mx+y=3m-1 ( m là tham số )
a.giải hệ phương trình với m =-2
b. tìm m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x2-y2=4
a: Thay m=-2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
\(x^2-y^2=4\)
=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)
=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)
=>\(8m^2+8m+2=4\left(m+1\right)^2\)
=>\(8m^2+8m+2-4m^2-8m-4=0\)
=>\(4m^2-2=0\)
=>\(m^2=\dfrac{1}{2}\)
=>\(m=\pm\dfrac{1}{\sqrt{2}}\)
Cho hệ phương trình với tham số m:mx+y-3=3
x+my-2m+1=0(m là tham số)
a.giải hệ phương trình với m=-1
b.tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất là nghiệm nguyên
a: Khi m=-1 thì hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}-x+y-3=3\\x-y-2\cdot\left(-1\right)+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x+y=6\\x-y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}0x=3\left(vôlý\right)\\x-y=-3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
b: \(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)(1)
=>\(\left\{{}\begin{matrix}mx+y=6\\x+my=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=6-mx\\x+m\left(6-mx\right)=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+6m-m^2x=2m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(1-m^2\right)=-4m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m^2-1\right)=4m+1\\y=6-mx\end{matrix}\right.\)
TH1: m=1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=4\cdot1+1=5\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
TH2: m=-1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=-4+1=-3\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
Th3: \(m\notin\left\{1;-1\right\}\)
Hệ phương trình (1) sẽ tương đương với \(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=6-mx=\dfrac{6\left(m^2-1\right)-m\left(4m+1\right)}{m^2-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=\dfrac{6m^2-6-4m^2-m}{m^2-1}=\dfrac{2m^2-m-6}{m^2-1}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì m/1<>1/m
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để x nguyên thì \(4m+1⋮m^2-1\)
=>\(\left(4m+1\right)\left(4m-1\right)⋮m^2-1\)
=>\(16m^2-1⋮m^2-1\)
=>\(16m^2-16+15⋮m^2-1\)
=>\(m^2-1\inƯ\left(15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(2\right)\)
Để y nguyên thì \(2m^2-m-6⋮m^2-1\)
=>\(2m^2-2-m-4⋮m^2-1\)
=>\(m+4⋮m^2-1\)
=>\(\left(m+4\right)\left(m-4\right)⋮m^2-1\)
=>\(m^2-16⋮m^2-1\)
=>\(m^2-1-15⋮m^2-1\)
=>\(m^2-1\inƯ\left(-15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(3\right)\)
Từ (2),(3) suy ra \(m\in\left\{0;2;4;-2;-4\right\}\)
Thử lại, ta sẽ thấy m=4;m=-2 không thỏa mãn x nguyên; m=4;m=-2 không thỏa mãn y nguyên
=>\(m\in\left\{0;2;-4\right\}\)
Cho hệ phương trình x + m y = m + 1 m x + y = 2 m (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x ≥ 2 y ≥ 1
A. m < 1
B. m < −1
C. m > 1
D. m > −1
Xét hệ x + m y = m + 1 1 m x + y = 2 m 2
Từ (2) ⇒ y = 2m – mx thay vào (1) ta được:
x + m (2m – mx) = m + 1
⇔ 2 m 2 – m 2 x + x = m + 1 ⇔ ( 1 – m 2 ) x = − 2 m 2 + m + 1
( m 2 – 1 ) x = 2 m 2 – m – 1 ( 3 )
Hệ phương trình đã cho có nghiệm duy nhất (3) có nghiệm duy nhất
m 2 – 1 ≠ 0 ⇔ m ≠ ± 1 ( * )
Khi đó hệ đã cho có nghiệm duy nhất x = 2 m + 1 m + 1 y = m m + 1
Ta có
x ≥ 2 y ≥ 1 ⇔ 2 m + 1 m + 1 ≥ 2 m m + 1 ≥ 1 ⇔ − 1 m + 1 ≥ 0 − 1 m + 1 ≥ 0 ⇔ m + 1 < 0 ⇔ m < − 1
Kết hợp với (*) ta được giá trị m cần tìm là m < −1
Đáp án: B
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\) (m là tham số)
a) Giải hệ phương trình với m = 3
b) Tìm m để hệ có nghiệm x= -1, y=3
c) Chứng tỏ hệ phương trình có nghiệm duy nhất với mọi giá trị của tham số m
(mink đag cần gấp)
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên
cho hệ phương trình: mx-y=2
2x+my=5(m là tham số)
a.giải hệ phương trình khi m=3
b. tìm m để hệ phuong trình có nghiệm duy nhất(x;y) thỏa mãn x+y=\(1-\dfrac{m^2}{m^2+2}\)
a: Khi m=3 thì hệ phương trình sẽ là:
\(\left\{{}\begin{matrix}3x-y=2\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-3y=6\\2x+3y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}11x=11\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3x-2=3-2=1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}mx-y=2\\2x+my=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\2x+m\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+2\right)=5+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+5m}{m^2+2}-2=\dfrac{2m^2+5m-2m^2-4}{m^2+2}=\dfrac{5m-4}{m^2+2}\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\)
\(x+y=1-\dfrac{m^2}{m^2+2}\)
=>\(\dfrac{5m-4+2m+5}{m^2+2}=\dfrac{m^2+2-m^2}{m^2+2}=\dfrac{2}{m^2+2}\)
=>7m+1=2
=>7m=1
=>\(m=\dfrac{1}{7}\)
cho hệ phương trình mx-y=2
3x+my=5( m là tham số)
xác định các giá trị của tham số m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x+y=3/m2+3
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-3\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\cdot\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{2m^2+5m}{m^2+3}-2=\dfrac{2m^2+5m-2m^2-6}{m^2+3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)
\(x+y=\dfrac{3}{m^2+3}\)
=>\(\dfrac{2m+5+5m-6}{m^2+3}=\dfrac{3}{m^2+3}\)
=>\(7m-1=3\)
=>7m=4
=>m=4/7(nhận)