Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Linh
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Bui Đưc Trong
3 tháng 2 2018 lúc 20:11

mình cũng đang định hỏi giống bạn !!!

Nguyễn Văn Kiên
7 tháng 6 lúc 21:22

hảo năm 2018 mới trả lời =)

 

Đoàn Thị Hồng Thanh
Xem chi tiết
laxusdreyar
Xem chi tiết
Nguyễn Thị Thu
13 tháng 5 2017 lúc 15:23

\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)

\(=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)

\(=\left(1+1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

\(=49.1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}=\dfrac{49}{50}< 1\)

\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>-1\)

\(\Rightarrow B=49.1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1=48\)

\(\Rightarrow\) B > 48 (đpcm)

Xem chi tiết
Nguyễn Việt Lâm
16 tháng 5 2021 lúc 21:52

\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)

Từ đó ta có:

\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{50^2-1}{50^2}>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+...+1-\dfrac{1}{49.50}\)

\(\Rightarrow A>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)

👁💧👄💧👁
16 tháng 5 2021 lúc 21:55

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\\ A=\left(1+1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\\ A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\)

Có \(\dfrac{1}{4}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\\ \dfrac{1}{9}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\\ \dfrac{1}{16}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\\ ...\\ \dfrac{1}{2500}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1-\dfrac{1}{50}< 1\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1\)

\(\Rightarrow A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)>49-1\\ \Rightarrow A>48\)

Nguyễn Tiến Dũng
Xem chi tiết
Vũ Minh Tuấn
24 tháng 3 2020 lúc 11:50

Đặt \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
nguyễn khánh huyền
Xem chi tiết
NGUYỄN THÀNH PHÁT
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết
Khôngg Tồnn Tạii
6 tháng 2 2017 lúc 20:18

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)

\(\Rightarrow B=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(\Rightarrow B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\) (có 49 số 1)

\(\Rightarrow B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1-\frac{1}{50}\)<1

\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>-1\)

\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>49-1\)

\(\Rightarrow B>48\)