Vẽ đồ thị của các hàm số:
y = 5x - 7
y = -2x + 3
y = x
y = -x
Giúp mình với! Mình cảm ơn các bạn nhiều!
vẽ đồ thị hàm số y=1/2x
Điểm P(-6;3) có thuộc đồ thị hàm số không?
CÁC BẠN GIÚP M VỚI M ĐG RẤT CẦN , MÌNH CẢM ƠN
Vẽ trên cùng một hệ trục tọa độ đồ thị hàm số y = -2x và y = x
Các bạn giúp mình với nhé mình đang cần gấp mà ko biết làm kiểu gì, nếu các bạn ko vẽ được hình thì vẽ hình vào vở rồi chụp ảnh lại giúp mình nhé, mình sẽ tick cho người làm đúng và đầu tiên nha . Cảm ơn các bạn rất rất nhiều
gọi (d) y=x
Thay x=1=>y=1=> (1;1)
Thay x=2=>y=2=> (2;2)
gọi (d1) y=-2x
Thay x=-1=> y=2=> (-1;2)
Thay x=1=>y=-2=> (1;-2)
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
1.
Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN
\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ
Hàm có 4 tiệm cận
2.
Căn thức của hàm luôn xác định
Ta có:
\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn
\(\Rightarrow x=2\) ko phải TCĐ
\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)
\(\Rightarrow x=3\) là tiệm cận đứng duy nhất
cho hệ số : y = f(x) = 3/5 *x
a) Tính f(1); f(2)
b) Vẽ đồ thị hàm số
c) M thuộc đồ thị hàm sô trên và có tung độ bằng -3. Tìm tọa độ của điểm M (bằng tính toán)
Mình đang rất cần, các bạn giải giúp mình với ạ. Cảm ơn nhiều!
a, \(f\left(1\right)=\frac{3}{5}.1=\frac{3}{5}\); \(f\left(2\right)=\frac{3}{5}.2=\frac{6}{5}\)
b, Bảng giá trị:
x | 0 | 5 |
y = (3/5) . x | 0 | 3 |
Vậy đồ thị hàm số (3/5) . x là 1 đường thẳng đi qua gốc tọa độ O (0; 0) và điểm (5; 3)
c, Gọi hoành độ của M là xM
Vì M thuộc đồ thị hàm số và có tung độ bằng -3
=> -3 = xM . (3/5)
=> xM = -3 : (3/5)
=> xM = -5
Vậy tọa độ của điểm M là (-5 ; -3)
a) f (1 ) = 3/5 x 1 = 3/5
f (2) = 3/5 x 2 = 6/5
b) Bảng giá trị
x 0 5
y = ( 3/5) . x 0 3
Vẽ đồ thị hàm số:
\(y=\hept{\begin{cases}2x\left(x\ge0\right)\\-\frac{1}{2}\left(-2< x< 0\right)\\1\left(x\le-2\right)\end{cases}}\)
CÁC BẠN NHỚ GHI CẢ CÁCH VẼ NHA! CẢM ƠN
CÁC BẠN LÀM NHANH GIÚP MÌNH VỚI MAI MÌNH KIỂM TRA RỒI !
Mọi người giúp mình với ạ!!! Mình cảm ơn rất nhiều!!!
1, Viết phương trình đường thẳng đi qua các điểm cực trị của đồ thị hàm số:
\(y=x^3-6x^2-3x+2\)
2, Cho hàm số: \(y=x^3-x^2+mx\)
Tìm m để đồ thị hàm số có các điểm cực đại, cực tiểu: A, B sao cho Δ OAB vuông góc tại O.