3. Cho ABC có I,K lần lượt là trung điểm của AB,AC. Trên tia IK lấy E sao cho IK=KE. Nối E với C
a. Chứng minh: AKI= CKE
b. Chứng minh: AI//CE VÀ AI=CE
c. Nối I với C. Chứng minh IBC= CEI
d. Chứng minh: IE=BC. Từ đó suy ra IK= BC
Cho tam giác ABC, trung tuyến BD. Trên tia đối của tia DB lấy E sao cho DE=DB. M, N lần lượt là trung điểm của BC, CE. I và K lần lượt là giao của BE vói AM và AN. Chứng minh: BI=IK=KE.
ai trả lời đúng vầ nhanh nhất sẽ nhận k
ta có BD=ED(gt)
\(\Rightarrow\frac{2}{3}BD=\frac{2}{3}ED\Rightarrow BI=ED\left(1\right)\)
\(BD=ED\Rightarrow\frac{1}{3}BD=\frac{1}{3}ED\Rightarrow ID=DK\)
lại có:\(DE=\frac{1}{3}DE+\frac{1}{3}DE+\frac{1}{3}DE\)
\(\Rightarrow\frac{2}{3}DE=DK+ID\left(DK=ID\right)\)
\(\Rightarrow KE=IK\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow BI=IK=KE\)
Cho tam giác ABC có AB=AC
a, Chứng minh góc ABC= góc ACB
b, Trên cạnh AB lấy D. Trên tia đối của tia CA lấy điểm: E sao cho BD=CE. Nối D,E. Gọi I là trung điểm DE. Chứng minh B,I,C thẳng hàng
a) Vì AB = AC
=> \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\) (hai góc ở đáy)
Cho tam giác ABC có AB=AC
a, Chứng minh góc ABC= góc ACB
b, Trên cạnh AB lấy D. Trên tia đối của tia CA lấy điểm: E sao cho BD=CE. Nối D,E. Gọi I là trung điểm DE. Chứng minh B,I,C thẳng hàng
Ta có hình vẽ:
a/ Vì tam giác ABC có AB = AC => \(\Delta\)ABC cân
=> \(\widehat{ABC}\)=\(\widehat{ACB}\) (đpcm)
b/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (đã chứng minh)
\(\widehat{BID}\)=\(\widehat{CIE}\) (đối đỉnh)
Mà tổng 3 góc trong tam giác = 1800
=> \(\widehat{BDI}\)=\(\widehat{CEI}\)
Ta có: BD = CE (GT)
DI = IE (GT)
=> \(\Delta\)BID = \(\Delta\)CIE
Ta có: \(\widehat{BID}\)+\(\widehat{DIC}\)=\(\widehat{DIC}\)+\(\widehat{CIE}\)=1800 (kề bù)
=> \(\widehat{BIC}\)=1800 hay B,I,C thẳng hàng
Cho ∆ABC ,M là trung điểm của BC . Trên tia đối của tia MA lấy E sao cho ME = MA
a)Chứng minh:∆ABM = ∆ECM
b) Chứng minh :AB // CE
c) Lấy điểm I thuộc AC , Điểm K thuộc BE sao cho AI = EK .
Chứng minh MI = MK
a: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔABM=ΔECM
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó:ABEC là hình bình hành
Suy ra: AB//CE
c: Xét tứ giác AIEK có
AI//EK
AI=EK
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay MI=MK
Cho ∆ABC có BC=8cm, các đường trung tuyến BD, CE. Gọi M, N lần lượt là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE lần lượt là I, K.
a) Tính độ dài MN
b) Chứng min MI=IK=KN.
Cho ∆ABC cân tại A, M là trung điểm của BC. Trên tia đối của AB lấy điểm E, trên tia đối của AC lấy điểm D, sao cho AE=AD. Chứng minh D và E đổi xứng với nhau qua đường thẳng AM
Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy
mik ngu hình lắm xin lỗi nha
ngu thì xen zô nói làm j
Lương Quang Vinh chứ bn xem vô làm gì mắc mớ gì bới người ta
Bài 4 Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Nối A với M. Trên tia
đối của các tia BC và CB lần lượt lấy 2 điểm D và E sao cho BD = CE.
a)Chứng minh: ABD = ACE.
b)Chứng minh: Tia AM là tia phân giác chung của 2 góc BAC và DAE.
c) Lấy các điểm H, K lần lượt trên cạnh AD, AE sao cho: AH = AK > AB. Chứng minh
rằng: BH = CK.
d) Gọi O là giao điểm của đường thẳng HB với đường thẳng AM. Chứng minh: OB = OC.
e) Chứng minh: Ba điểm O, C, K thẳng hàng.
Cho tam giác ABC, trung tuyên AM. Trên tia đối của tia MA lấy D sao cho MD = MA.
a) Chứng minh AB // CD và AB = CD.
b) Gọi E và F lần lượt là trung điểm của AC và BD. AF cắt BC tại I, DE cắt BC tại K. Chứng minh I là trọng tâm tam giác ABD, K là trọng tâm tam giác ACD.
c) Chứng minh BI = IK = KC.
d) Chứng minh E, M, F thẳng hàng.
Cho tam giác ABC có I là trung điểm AB, K là trung điểm AC. Trên tia đối của KI lấy điểm M sao cho KI=KM. Chứng minh rằng:
a) Tam giác AKI= tam giác CKM
b) AI // MC
c) IK // BC và IK = 1/2 BC
a)xét tam giác AKI và tam giác CKM có
KI =KM (giả thiết )
góc AKI = góc CKM ( 2 góc đối đỉ̉nh )
AK= CK ( K là trung điểm của CA )
suy ra tam giác AHI = tam giác CKM
b) tam giác AKI= tam giác CKM
suy ra góc MCK =góc KAI ( 2 GÓC TƯƠNG ƯỚNG)
mà chúng ở vị trí so le trong do AC cắt AI và MC
suy ra AI // MC
c ) MK 0 BIEI LAM