Tính giá trị biểu thức M = x 2 + y 2 − (1 + 2xy) x 2 − y 2 + 1 + 2x tại x = 99 và y = 100.
A. M = - 1 100
B. M = 1 100
C. M = - 1 200
D. M = 1 200
Cho biểu thức M=\(x^3\)+3x\(y^2\)- 2xy+\(x^3\)- xy - 2x\(y^2\)+1
a) thu gọn biểu thức M ; tính giá trị biểu thức khi x=-1 ; y=2
A = 3x^3 +6x^2 + 3xy^3
x= 1 phần 2 ; p = -1 phần 3
A=3.1 phần 2^3 . -1 phần 3 + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3
=-1 phần 8 + -1 phần 2 - 1 phần 2
= -1 phần 4
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Bài 6: Cho biểu thứ M = x2 – 2y + 3xy. Tính giá trị của M khi x = 2, y = 3
Bài 7: Cho biểu thức P = -x2 - 5xy + 8y2 . Tính giá trị của M tại x = -1 và y = -2
Bài 8: Tính giá trị biểu thức
A = 3x3 y + 6x2y2 + 3xy3 tại
B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 6:
M= 2.2 - 2.3+3.2.3
M= 4 - 6 + 18
M= 20
Bài 7:
P= 1.2 - 5.-1.-2 + 8.-2.2
P = 2 -10 -32
P= -44
Bài 8:
A (thiếu dữ kiện bn ơi)
B= -1.2 . 3.2 + -1.3 +3.3 +-1.3
B= -2 . 6 + -3 + 9 +-3
B= -2 . 6 - 3 + 9 - 3
B= -12 - 3 + 9 - 3
B= -9
Tính giá trị của biểu thức sau, biết x+y=0
M=x^4-xy^3+x^3y-y^4-1=0
tính giá trị của biểu thức sau, biết x+y+1=0
D=X^2(x+y)-y^2 (x+y)+x^2-y^2+2(x+y)+3
Cho biểu thức M=\(x^3+3xy^2-2xy+x^3-xy-2xy^2+1\)
a) thu gọn biểu thức M
b) tính giá trị biểu thức khi x=-1 ; y=2
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3
Bài 8. a) Tính giá trị của biểu thức 0x2y4z + 7/2x2y4z – 2/5x2y4z tại x = 2 ; y =1/2 ; z = -1.
a) Tính giá trị của biểu thức 2/5x4z3y – 0x4z3y + x4z3y tại x = 2 ; y =1/2 ; z = -1.
b) Tính giá trị của biểu thức xy3 + 5xy3 + ( - 7xy3) tại
c) Tính giá trị của biểu thức tại x = 3, y = -1/2
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)
a)Cho x+y=7,tính giá trị của biểu thức M=(x+y)3+2x2+4xy+2y2
b)Cho x-y=-5,tính giá trị biểu thức N=(x-y)3-x2+2xy-y2
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
a) Cho x+ y = 7. Tính giá trị của biểu thức sau : M = ( x + y )^3 + 2x^2 + 4xy + 2 y^2
b) Cho x - y = -5. Tính giá trị của : N = ( x - y )^3 - x^2 + 2xy - y^2
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
\(a,M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3+2\left(x+y\right)^2\)
\(=\left(x+y\right)^2\left(x+y+2\right)=7^2.9=49.9=441\)
\(b,N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(x-y\right)^3-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=\left(x-y\right)^2.\left(x-y-1\right)\)
\(=\left(-5\right)^2\left(-5-1\right)=15.-6=-150\)
1. Tính Giá trị nhỏ nhất của biểu thứ (x+1)(x+2)(x+3)(x+6)+2010
2. Phân tích đa thức thành nhân tử (x-2)(x-4)(x-6)(x-8) +15
3. Tính giá trị biểu thức sau: x^2 +y= y^2 +x. tính giá trị của biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
Bài 1: Rút gọn rồi tính giá trị của mỗi biểu thức sau:
a) M = 1/2 x²y . (-4)y
khi x + √2 ; y = √3
b) N = xy √5x²
khi x = -2; y = √5
Bài 2 : Tính giá trị tổng 4 đơn thức khi x = -6; y= 15
: 11x²y³ ; 10/7x²y³; -3/7x²y³; -12x²y³
Bài 1 :
a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)
\(\Rightarrow M=-2x^2y^2\)
Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)
\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)
\(\Rightarrow M=-2.2.3=-12\)
b) \(N=xy.\sqrt[]{5x^2}\)
\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)
\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
Khi \(x=-2< 0;y=\sqrt[]{5}\)
\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)
2:
Tổng của 4 đơn thức là;
\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)
=>Khi x=-6 và y=15 thì A=0