phân tích đa thức thành nhân tử :a^4+9a^2+26a+24
phân tích đa thức thành nhân tử
A = \(b^4-9a^2-4b^2+4\)
\(A=b^4-9a^2-4b^2+4=b^4-4b^2+4-9a^2\)
\(=\left(b^2-2\right)^2-9a^2\)
\(=\left(b^2-2+3a\right)\left(b^2-2-3a\right)\)
\(A=b^4-9a^2-4b^2+4\)
\(A=\left(b^2\right)^2-2.2.b^2+2^2-9a^2\)
\(A=\left(b^2-2\right)^2-\left(3a\right)^2\)
\(A=\left(b^2-2-3a\right)\left(b^2-2+3a\right)\)
_Hắc phong_
\(Â=b^4-9a^2-4b^2+4\)
\(=b^4-4b^2+4-\left(3a\right)^2\)
\(=\left(b^2-2\right)^2-\left(3a\right)^2=\left(b-2+3a\right)\left(b-2-3a\right)\)
Phân tích đa thức thành nhân tử
*4/9a4 - 2/45
phân tích đa thức thành nhân tử :
7a^2-7ax-9a+9x
\(7a^2-7ax-9a+9x=\left(7a^2-7ax\right)-\left(9a-9x\right)=7a\left(a-x\right)-9\left(a-x\right)=\left(a-x\right)\left(7a-9\right)\)
\(7a^2-7ax-9a+9x=7a\left(a-x\right)-9\left(a-x\right)=\left(7a-9\right)\left(a-x\right)\)
PhÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(a^4-9a^3+81a-81\)
=a4-81-(9a3-81a)
=(a2-9)(a2+9) -9a(a2-9)
=(a2-9)(a2-9a+9)
ĐẾN ĐÂY MÌNH CHỊU ,BẠN GIẢI TIẾP NHA
phân tích các đa thức sau thành nhân tử
A = \(9a^2+b^2-6ab-1\)
\(A=9a^2-6ab+b^2-1\)
\(A=\left(3a-b\right)^2-1\)
\(A=\left(3a-b-1\right)\left(3a-b+1\right)\)
P/s haphuong
phân tích đa thức thành nhân tử: a2-9a3+81a-81
giúp mình với mọi người ơi!!!
\(a^2-9a^3+81a-81\)
Phân tích đa thức thành nhân tử:
\(-\left(9a^3-a^2-81a+81\right)\)
phân tích đa thức thành nhân tử:
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4.\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4.\left(4b+3a\right)^2\)
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(9a^2+24ab+16b^2\right)\)
\(=-a^4b^4\left[\left(3a\right)^2+2.3a.4b+\left(4b\right)^2\right]\)
\(=-a^4b^4\left(3a+4b\right)^2\)
Phân tích đa thức thành nhân tử (x+1)(x+2)(x+3)(x+4) – 24
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(\left(x+1\right)\left(x+4\right)\right)\left(\left(x+2\right)\left(x+3\right)\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
- Đặt \(x^2+5x+5=a\)
\(=\left(a-1\right)\left(a+1\right)-24=a^2-1-24=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-24\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
phân tích đa thức thành nhân tử :
(x + 2) (x + 3) (x + 4) (x + 5) - 24
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(x^2+7x+11\right)^2-1-24\\ =\left(x^2+7x+11\right)^2-25\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25\)
\(=\left(x^2+7x+11\right)^2-25=\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
=[(x+2)(x+5)][(x+3)(x+4)]−24=(x2+7x+10)(x2+7x+12)−24=(x2+7x+11)2−1−24=(x2+7x+11)2−25=(x2+7x+11−5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)=(x+1)(x+6)(x2+7x+16)