Tìm đa thức M biết:
a) 2 x 3 + 9 x 2 + 15x + 9 = M.(2x + 3);
b) (2 x 2 - 2x +1 ).M = 6 x 4 - 4 x 3 + x 2 + x.
Tìm m để đa thức A chia hết cho B biết:
A=2x^3+5x^2+3x+m+5
B=x+3
\(\Leftrightarrow2x^3+6x^2-x^2-3x+6x+18+m-13⋮x+3\)
hay m=13
Bài 1. Phân tích các đa thức sau thành nhân tử:
a) 8x3-2x c) -5m3(m+1)+m+1
Bài 7. Tìm x, biết:
a) 2-x=2(x-2)3 b) 8x3-72x=0
d) 2x3+3x2+3+2x=0
Bài 1:
a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)
c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)
Câu 1: Phân tích đa thức thành nhân tử:
a). 5xy2 + 10x2y. b). x2 - 9 - 2xy - y2. c). x3 - 8 + 2x(x - 2).
Câu 2: Tìm x, biết:
a). (x - 1)(x + 1) - x(x + 3) + 7 = 0. b). 2x3 - 22x2 + 36x = 0.
Câu 3: Cho biểu thức A = + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).
a). Rút gọn biểu thức A.
b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
Câu 4:
1). Sân bóng tại Trung tâm thể thao quận Tây Hồ là 1 hình chữ nhật có chiều dài 105m, chiều rộng 68m. Ban quản lý muốn thay cỏ mới cho sân. Tính số tiền ban quản lý phải trả để mua cỏ ? biết mỗi mét vuông cỏ có giá 120 000 đồng.
2). Cho ΔABC vuông tại A (AB < AC), đương cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M.
a). Chứng minh tứ giác ABDC là hình chữ nhật.
b). Trên tia đối của tia HA lấy điểm E sao cho HA = HE. Chứng minh DB là phân giác góc ADE.
c). Gọi I, K lần lượt là hình chiếu của E lên BD và CD. Chứng minh 3 điểm H, I, K thẳng hàng.
Câu 2:
a: \(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)+7=0\)
=>\(x^2-1-x^2-3x+7=0\)
=>-3x+6=0
=>-3x=-6
=>\(x=\dfrac{-6}{-3}=2\)
b: \(2x^3-22x^2+36x=0\)
=>\(2x\left(x^2-11x+18\right)=0\)
=>\(x\left(x^2-11x+18\right)=0\)
=>\(x\left(x^2-2x-9x+18\right)=0\)
=>\(x\left[x\left(x-2\right)-9\left(x-2\right)\right]=0\)
=>\(x\left(x-2\right)\left(x-9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-2=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=9\end{matrix}\right.\)
Câu 4:
1: Diện tích cỏ cần thay là:
\(105\cdot68=7140\left(m^2\right)\)
Số tiền BQL sân cần trả là:
\(7140\cdot120000=856800000\left(đồng\right)\)
2:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADE có
H,M lần lượt là trung điểm của AE,AD
=>HM là đường trung bình của ΔADE
=>HM//DE
=>BC//DE
=>\(\widehat{EDB}=\widehat{DBM}\)(hai góc so le trong)(1)
Ta có: ABDC là hình chữ nhật
=>AD=BC
mà \(MD=\dfrac{AD}{2};MB=\dfrac{BC}{2}\)
nên MD=MB
=>ΔMBD cân tại M
=>\(\widehat{MDB}=\widehat{MBD}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MDB}=\widehat{EDB}\)
=>\(\widehat{ADB}=\widehat{EDB}\)
=>DB là phân giác của góc ADE
cho hai đa thức
P(x) = 15x3 - 4x2 - 5x + 1010 - 2x2 và Q(x) = 7x - 15x3 - x2 - 1000 + 3x2 - 2x - 9
thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến
1) Cho f(x)=9-x^5+4x-2x^3+x^2-7x^4
g(x)=x^5-9+2x^2+7x^4+2x^3-3x
A) sắp xếp các đa thức sau theo lũythừa giảm dần của biến
b) tính h(x)=f(x)+g(x)
C) tìm nghiệm của (x)
2)cho đa thức M(x)=a+b×(x-1)+c×(x-1)×(x-2). Tìm a;b;c biết M(1)=1; M(2)=3 và M(0)=5
3) cho đa thức f(x)=mx^2-3x+2. Tìm m biết x=-1 là nghiệm của f(x)
M(x) = 3x^3 - 3x + x^2 + 5 . N (x) = 2x^2 - x + 3x^3 + 9 . a, Tính M(x) + N (x) . b, Biết M(x) + N(x) - P(x) = 6x^3 + 3x^2 + 2x . Hãy tính P(x) . c, Tìm nghiệm của đa thức P(x)
a. M(x) + N(x) = 3x3 - 3x + x2 + 5 + 2x2 - x + 3x3 + 9
= (3x3 + 3x3) + ( x2 + 2x2 ) + ( -3x - x ) + (5 + 9)
= 6x3 + 3x2 - 4x + 14
b. M(x) + N(x) - P(x) = 6x3 + 3x2 + 2x
=> 6x3 + 3x2 - 4x + 14 - P(x) = 6x3 + 3x2 + 2x
=> 6x3 + 3x2 - 4x + 14 - ( 6x3 + 3x2 + 2x) = P(x)
=> 6x3 + 3x2 - 4x + 14 - 6x3 - 3x2 - 2x = P(x)
=> (6x3 - 6x3 ) + (3x2 - 3x2 ) + (-4x - 2x ) + 14 = P(x)
=> -6x + 14 = P(x)
Ta có : -6x + 14 = 0
=> -6x = -14
=> x = 7/3
=> Đa thức P(x) = -6x + 14 có nghiệm là 7/3
=>
Cho hai đa thức: P(x)=x^2+4x+9-2x^3 Q(x) = 2x^3-3x+2x^2-9
a) Sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến
b) Tính M(x)= Q(x) + P(x)
c) Chứng tỏ x= -1/3 là nghiệm của M(x)
a) \(P\left(x\right)=x^2+4x+9-2x^3\)\(=-2x^3+x^2+4x+9\)
\(Q\left(x\right)=2x^3-3x+2x^2-9=2x^3+2x^2-3x-9\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(-2x^3+x^2+4x+9\right)+\left(2x^3+2x^2-3x-9\right)\)
\(=\left(-2x^3+2x^3\right)+\left(x^2+2x^2\right)+\left(4x-3x\right)+\left(9-9\right)\)
\(=3x^2+x\)
c) Ta có: \(M\left(x\right)=3x^2+x\)
\(\Rightarrow M\left(-\dfrac{1}{3}\right)=3.\left(-\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)=\dfrac{1}{3}+\left(-\dfrac{1}{3}\right)=0\)
Vậy \(x=-\dfrac{1}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
Tìm nghiệm của đa thức. A(x)=3x^2-15x ;. B(x)=-2x^2-1. C(x)=2x^3+18x.
Có: A= 3x2 - 15x = 0
A = 3x(x-5) = 0
=> x(x-5) = 0
=> x = 0 hoặc x-5 = 0
=> x= 0 hoặc x= 5
B = -2x2 - 1 = 0
=> -2x2 = 1
=> x2 = \(\dfrac{-1}{2}\) (vô lí )
Vậy B vô nghiệm
C = 2x3 + 18x = 0
=> C= 2x(x2 + 9) = 0
=> x.(x2 + 9) = 0
=> x= 0 hoặc x2 + 9 = 0
=> x= 0 hoặc x2 = -9 (vô lí)
Vậy nghiệm của đa thức C là x = 0
A(x) = 3x2 - 15x = 3x(x - 5)
Đặt A(x) = 0, ta có:
A(x) = 3x(x - 5) = 0
\(\Rightarrow\left[{}\begin{matrix}3x=0\\x-5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy nghiệm của A(x) là x = 0 hoặc x = 5
_________________________________________________________
Đặt B(x) = 0, ta có:
B(x) = -2x2 - 1 = 0
=> -2x2 = 1
\(\Rightarrow x^2=-\dfrac{1}{2}\) (1)
Mà \(x^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow x^2\ne-\dfrac{1}{2}\Rightarrow x\in\varnothing\)
Vậy B(x) vô nghiệm
_________________________________________________________
C(x) = 2x3 + 18x = 2x(x2 + 9)
Đặt C(x) = 0, ta có:
C(x) = 2x(x2 + 9) = 0
=> Ta có các trường hợp:
+/ 2x = 0 => x = 0
+/ x2 + 9 = 0 => x2 = -9
Mà \(x^2\ge0\) nên không tồn tại trường hợp x2 + 9 = 0
Vậy nghiệm của C(x) là 0
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1