Cho tam giác DEF cân tại D. Kẻ D H ⊥ E F ( H ∈ E F ) .
a) Chứng minh H D E ^ = H D F ^
b) Kẻ H M ⊥ D E ( M ∈ D E ) và H N ⊥ D F ( N ∈ D F ) . Chứng minh HM = HN.
c) Chứng minh ∆ H M E = ∆ H N F .
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H(H€BC)
a) chứng minh tam giác ABH= tam giác ACH
b) trên tia đối của CA lấy E sao cho CA=CE, AH cắt BE tại D. Chứng minh tam giác DBC cân
c) CD cắt AB tại F. chứng minh DF=2C Mình cần gấp ạ, cảm on
Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ). a. Chứng minh: DFI = HFI b. DFH là tam giác gì? Vì sao?. c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI. Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE. a) Chứng minh cân b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của . c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK. d) Chứng minh ba đường thẳng AM, BH, CK đồng quy
Cho tam giác DEF cân D (\(\widehat{D}\)< \(^{90^o}\) ). Kẻ DH vuông góc EF tại H
a) Chứng minh tam giác DHE=tam giác DHF \(\widehat{EDH}\)=\(\widehat{FDH}\)
b) Kẻ EM vuông góc DF (\(M\)E\(DF\)), FN vuông góc DE(\(N\)E\(DE\)). Chứng minh tam giác DMN là tam giác cân
c) EM cắt FN tại O. Chứng minh ba điểm D,O,H thẳng hàng.
d)Qua F kẻ đường thẳng song song với EM, cắt tia DH tại P; tam giác DEF phải thỏa mãn điều kiện gì để tam giác OFP là tam giác đều
cho tam giác abc cân tại a gọi h là trung điểm của bc
a, Chứng minh AH vuông góc với BC
b, Kẻ HE vuong góc với AB tại E ; HF vuông góc với AC tại F . Chứng minh HE = HF
c, Chứng minh tam giác AEF là tam giác cân
d, Chứng minh EF song song BC
Cho tam giác ABC. Kẻ AH vuông góc BC ( H thuộc BC). Gọi D, E, F lần lượt là
các điểm nằm giữa A và H, nằm giữa B và H, nằm giữa C và H. Chứng minh rằng
chu vi tam giác DEF nhỏ hơn chu vi tam giác ABC. Với vị trí nào của các điểm D,
E, F thì chu vi tam giác DEF bằng ½ chu vi tam giác ABC.
Giúp với mik sắp phải nộp bài rồi
Cho tam giác ABC cân tại A. kẻ AH vuông góc với BC tại H a) chứng minh: tam giác AHB = AHC b) từ H vẽ HE vuông AB tại E, HF vuông AC tại F. Chứng minh HE = HF c) Qua H kẻ đường thẳng song song AB cắt AC tại K . chứng minh K là trung điểm AC
Câu 4:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra:HE=HF
Cho tam giác ABC vuông tại A. Đường phân giác BD (D∈AC). Kẻ DE\(\perp\) BC(E∈BC)
a)Chứng minh tam giác ABD=tam giác EBD
b)So sánh AD và DC
c)Kẻ AH vuông góc với BC(H∈BC), AH cắt BD tại F. Chứng minh AD song song DE và tam giác ADF cân
Cho tam giác ABC cân tại A, kẻ BD vuông góc với ACh(D thuộc AC). Kẻ vuông góc với AB tại E,gọi I là giao điểm của BD và CE chứng minh
A, BD=CE
B, tam giác BIC cân
C, AI là tia phân giác của góc BAC
D, DE//BC
E, gọi H là trung điểm của BC. Chứng minh A,I,H thẳng hàng
F,chứng minh AI vuông góc với BC
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
Cho DEF vuông tại D. Đường cao DH. Chứng minh
a. \(\widehat{F}\)=H\(\widehat{D}\)E
b.\(\widehat{E}\)=H\(\widehat{D}\)F
\(a,\left\{{}\begin{matrix}\widehat{F}+\widehat{E}=90^0\\\widehat{HDE}+\widehat{E}=90^0\end{matrix}\right.\Rightarrow\widehat{F}=\widehat{HDE}\\ b,\left\{{}\begin{matrix}\widehat{F}+\widehat{E}=90^0\\\widehat{HDF}+\widehat{F}=90^0\end{matrix}\right.\Rightarrow\widehat{E}=\widehat{HDF}\)
Cho tam giác DEF cân tại D. Gọi H là trung điểm của EF. a) C/m: t/giác DEH = t/giác DFH và DH vuông góc EF b) Kẻ HM vuông góc DE tại M, HN vuông góc DF tại N. C/m: t/giác HMN cân tại H c) C/m: MN// EF d) Qua E kẻ đường thẳng d vuông góc với DE, qua F kẻ đường thẳng d' vuông góc với DF, đường thẳng d cắt đường thẳng d' tại K. C/m: D, H , K thẳng hàng.
a) Xét tam giác DEH và tam giác DFH ta có:
DE = DF ( tam giác DEF cân tại D )
DEH = DFH ( tam giác DEF cân tại D )
EH = EF ( H là trung điểm của EF )
=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)
=> DHE=DHF(hai góc tương ứng)
Mà DHE+DHF=180 độ =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )
b) Xét tam giác MEH và tam giac NFH ta có:
EH=FH(theo a)
MEH=NFH(theo a)
=> tam giác MEH = tam giác NFH ( ch-gn)
=> HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )
c) Ta có : +) DM+ME=DE =>DM=DE-ME
+) DN+NF=DF => DN=DF-NF
Mà DE=DF(theo a) ; ME=NF( theo b tam giác MEH=tam giác NFH)
=>DM=DN => tam giác DMN cân tại D
Xét tam giac cân DMN ta có:
DMN=DNM=180-MDN/2 (*)
Xét tam giác cân DEF ta có:
DEF=DFE =180-MDN/2 (*)
Từ (*) và (*) Suy ra góc DMN = góc DEF
Mà DMN và DEF ở vị trí đồng vị
=> MN//EF (dpcm)
d) Xét tam giác DEK và tam giác DFK ta có:
DK là cạnh chung
DE=DF(theo a)
=> tam giác DEK= tam giác DFK(ch-cgv)
=>DKE=DKF(2 góc tương ứng)
=>DK là tia phân giác của góc EDF (1)
Theo a tam giac DEH= tam giac DFH(c.g.c)
=>EDH=FDH(2 góc tương ứng)
=>DH là tia phân giác của góc EDF (2)
Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)