Câu 4:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra:HE=HF
Câu 4:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra:HE=HF
cho tam giác abc cân tại a gọi h là trung điểm của bc
a, Chứng minh AH vuông góc với BC
b, Kẻ HE vuong góc với AB tại E ; HF vuông góc với AC tại F . Chứng minh HE = HF
c, Chứng minh tam giác AEF là tam giác cân
d, Chứng minh EF song song BC
cho tam giác nhọn ABC cân tại A có AB=13cm, BC=10cm. kẻ AH vuông góc với BC tại H
a) chứng minh tam giác ABH = tam giác ACH
b) gọi M là trung điểm của AC, G là giao điểm của BM và AH. tính AG
c) kẻ HE vuông góc với AB,HF vuông góc với AC (E thuộc AB, F thuộc AC. tia EH cắt AC tại I và tia FH cắt AB tại K. chứng minh AH là đường trung trực của đoạn thẳng IK.
d) từ H kẻ HD song song với AC (D thuộc AB). chứng minh ba điểm C, G, D thẳng hàng
Cho tam giác ABC cân tại A. H là trung điểm của BC.
a) Chứng minh =: tam giác AHB = tam giác AHC.
b) VẼ HE vuông góc với AB tại E; HF vuông góc với AC tại F. Chứng minh HE=HF.
c) Biết AB=5cm; BC=6cm. Tính AH.
d) Từ B vẽ BM vuông góc với AC tại M. Chứng minh HF= 1/2 BM
Cho Tam giác ABC cân tại a có AH vuông góc với BC . Từ H kẻ HE vuông góc AC tại E , HF vuông góc AC tại F . Chứng minh
A ) Tam giác AEF cân , HE = HF
B) EF // BC
C) gọi HE cắt AC tại M HF cắt AB tại N . Chứng minh Tam giác HMN cân
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC .(h thuộc bc)
a. Chứng minh: tam giác ahb= tam giác ahc.
b. Từ điểm H kẻ HK vuông góc với AB tại K, HF vuông góc với AC tại F.
Chứng minh: hk=hf.
c. Chứng minh:kf song song bc
Cho tam giác ABC cân tại A .B =65độ
a) tính góc BAC
b) vẽ AH vuông góc BC tại H . Chứng minh tam giác ABH =tam giác ACH
c) Từ H vẽ HE vuông góc AB tại E ,HFvuông góc AC tại F . Qua A , vẽ đường thẳng song song với BC cắt tia HF tại N . Trên tia He lấy điểm M sao cho HM =HN . Chứng minh M, A , N thẳng hàng
cho tam giác abc cân tại a (góc a nhọn). từ a kẻ ah vuông góc với bc a) chứng minh tam giác ahb=tam giác ahc và h là trung điểm của bc. b) gọi m trung điểm của ac. qua c kẻ đường thẳng song song với ab cắt bm tại e. chứng minh ab bằng ce và tam giác ace cân tại c. c) gọi i là giao điểm của ah và be . chứng minh i là trọng tâm của tam giác abc . d) chứng minh ab+ae>3bi. lớp 7
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H, kẻ EH vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
a) CM: tam giác AHB = tam giác AHC
b) Cho AH= 6cm, AC = 10cm. Tính HB,HC
c) CM: HE=HF
d) CM: EF song song với BC
e) CM: HA là tia phân giác của góc EHF
f) Gọi I là giao điểm của EF. Chứng minh: A,I,H thẳng hàng.
Cho tam giác ABC cân tại A (A<90 độ) vẽ AH vuông góc với BC tại
a,Chứng mình rằng tam giác ABH= tam giác ACH rồi suy ra AH là tia phân giác của góc A
b,Từ H vẽ HE vuông góc AB tại E, HF vuông góc với AC tại F, chứng minh rằng tam giác EAH= tam giác FAH rồi suy ra tam giác HEF là tam giác cân
c,Đường thẳng vuông góc với AC tại C cắt tia AH tại K . Chứng minh rằng EH=BK
d,Qua A vẽ đường thẳng song song với BC cắt tia HF tại N trên tia HE lấy điểm M sao cho HM= HN
chứng minh rằng M,A,N thẳng hàng