Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duy Nguyen
Xem chi tiết
dinhkhachoang
19 tháng 2 2017 lúc 17:47

XET TAM GIAC AMB VA TAM GIAC ANC CO

AB=AC(GT)

BM=CN(GT)

GOCS MBA=GOC NCA

=>TM GIACS AMB = TAM GIAC AMN 

=> AM=AN(dpcm)

=>tam giác amn can tai A

Rùa :3
Xem chi tiết
Rùa :3
18 tháng 2 2020 lúc 20:45

Ad olm hay ai đó giỏi toán giúp với

Khách vãng lai đã xóa

a,xét tam giác AMB và ANC có:MB=CN(gt)

tam giác AMN cân tại A(gt)=>AM=AN(đn)và góc AMN=góc ANM(tc)

=>tam giác AMB =tam giác ANC(c-g-c)

=>tam giác ABC cân tại A

b,tam giác AMB=tam giác ANC(cm trên)

góc ABM=góc ACN

góc ABM+góc MBH=180°

góc ACN +góc NCK=180°

=>góc MBH=góc NCK

xét tam giác MBH và NCK có MB=CN(gt)

góc MHB= góc CKN (MH vuông góc AB.NK vuông góc AC)(gt)

=>tam giác MBH=tam giác NCK (cạnh huyền-góc nhọn)

c, tam giác MBH= tam giác NCK (cm câu b)

=>góc BMH= góc CNK

=> tam giác MNO cân tại O

#Thiên#

Khách vãng lai đã xóa
Phạm Anh Thư
Xem chi tiết
Hải Anh Bùi
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Lê Thị Thùy Linh
Xem chi tiết
Cả Út
11 tháng 2 2019 lúc 18:16

chị tự kẻ hình :

a, xét tam giác AMB và tam giác ANC có : MB = CN (gt)

tam giác AMN cân tại A (gt) => AM = AN (đn) và góc AMN = góc ANM (tc)

=>  tam giác AMB = tam giác ANC (c - g - c)

=> AB = AC (đn)

=> tam giác ABC cân tại A (đn)

b, tam giác AMB = tam giác ANC  (câu a)

=> góc ABM = góc ACN (đn)

góc ABM + góc MBH = 180o (kb)

góc ACN + góc NCK = 180o (kb)

=> góc MBH = góc NCK 

xét tam giác MBH và tam giác NCK có : MB = CN (gt)

góc MHB = góc CKN do MH | AB và NK | AC (gt)

=> tam giác MBH = tam giác NCK  (ch - gn)

c, tam giác MBH = tam giác NCK  (câu b)

=> góc BMH = góc CNK (đn)

=> tam giác MNO cân tại O (đl)

Cả Út, e lớp 4, mak biết bài lp 7, em là thần thánh ak, ns thek thôi chứ cj cx bt lm bài lớp 8 tro khi đó cj ms hok lớp 7. :))

Lê Thị Thùy Linh
12 tháng 2 2019 lúc 12:23

bạn có thể giải nốt câu d,e ko

như phạm
Xem chi tiết
Thành Vinh Lê
8 tháng 8 2018 lúc 22:01

bạn vẽ hình giúp mình được không?

Phạm My
Xem chi tiết
04. Nguyễn Ngọc Ánh 7A3
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 22:51

a: Xét ΔMHC và ΔMKC có

CH=CK

\(\widehat{HCM}=\widehat{KCM}\) 

CM chung

Do đó: ΔMHC=ΔMKC

Suy ra: MH=MK