Cho cấp số nhân có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm số hạng còn lại của CSN đó.
A.
B.
C.
D.
Cho cấp số nhân có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm số hạng còn lại của cấp số nhân đó.
A. u 1 = 2 9 ; u 2 = 2 5 ; u 3 = 2 ; u 5 = 18 ; u 6 = 54 ; u 7 = 162
B. u 1 = 2 7 ; u 2 = 2 3 ; u 3 = 2 ; u 5 = 18 ; u 6 = 54 ; u 7 = 162
C. u 1 = 2 9 ; u 2 = 2 3 ; u 3 = 2 ; u 5 = 21 ; u 6 = 54 ; u 7 = 162
D. u 1 = 2 9 ; u 2 = 2 3 ; u 3 = 2 ; u 5 = 18 ; u 6 = 54 ; u 7 = 162
Chọn D.
Gọi cấp số nhân đó là (un), n = 1,7 ¯ . Theo đề bài ta có :
u 4 = 6 u 7 = 243 u 2 ⇔ u 1 . q 3 = 6 u 1 . q 6 = 243 u 1 . q ⇔ u 1 = 2 9 q = 3
Do đó các số hạng còn lại của cấp số nhân là
u 1 = 2 9 ; u 2 = 2 3 ; u 3 = 2 ; u 5 = 18 ; u 6 = 54 ; u 7 = 162
Cho cấp số nhân có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm số hạng thứ 2 và thứ 5 của cấp số nhân đó.
A. 2 và 18
B. 3 và 18
C. 2 3 và 18
D. 2 3 và 12
Cho một cấp số nhân có 5 số hạng với công bội dương. Biết rằng số hạng thứ hai bằng 3, số hạng thứ tư bằng 6. Tính tổng của cấp số nhân đó?
A. 9 - 21 2
B. 1 2 18 - 21 2
C. 1 2 18 + 21 2
D. 9 + 21 2
Kí hiệu u1,u2,u3,u4,u5 là các số hạng của cấp số nhân
Ta có :
Đáp án C
Tìm bốn số hạng liên tiếp của một cấp số nhân, trong đó số hạng thứ hai nhỏ hơn số hạng thứ nhất 35 còn số hạng thứ ba lớn hơn số hạng thứ tư 560.
Lời giải:
Gọi số đầu tiên trong csn trên là $u_1$ và công bội là $q$
$u_1-u_2=35$
$\Leftrightarrow u_1-u_1q=35$
$\Leftrightarrow u_1(1-q)=35(1)$
$u_3-u_4=560$
$\Leftrightarrow u_1q^2-u_1q^3=560$
$\Leftrightarrow u_1q^2(1-q)=560(2)$
Từ $(1); (2)\Rightarrow q^2=560:35=16$
$\Rightarrow q=\pm 4$
Nếu $q=4$ thì $u_1=\frac{-35}{3}$
$u_2=\frac{-35}{3}.4=\frac{-140}{3}; u_3=\frac{-140}{3}.4=\frac{-560}{3}; u_4=\frac{-2240}{3}$
Tương tự với $q=-4$
Cho biết một cấp số nhân, hiệu của số hạng thứ ba và số hạng thứ hai bằng 12 và nếu thêm 10 vào số hạng thứ nhất, thêm 8 vào số hạng thứ 2 còn giữa nguyên số hạng thứ 3 thì ba số mới lập thành một cấp số cộng. Hãy tính tổng năm số hạng đầu của cấp số nhân đó .
+ Gọi số hạng đầu của cấp số nhân là u1, công bội là x
Theo giả thiết ta có hệ phương trình
+ Tổng của năm số hạng đầu của CSN là:
Một cấp số cộng và một cấp số nhân có số hạng thứ nhất bằng 5, số hạng thứ hai của cấp số cộng lớn hơn số hạng thứ hai của cấp số nhân là 10, còn các số hạng thứ ba bằng nhau. Tìm các cấp số ấy.
ĐS: Cấp số cộng: 5, 25, 45
Cấp số nhân: 5, 15, 45
Một cấp số cộng và một cấp số nhân có số hạng thứ nhất bằng 5, số hạng thứ hai của cấp số cộng lớn hơn số hạng thứ hai của cấp số nhân là 10, còn các số hạng thứ 3 bằng nhau. Tìm các cấp số ấy ?
Gọi 3 số hạng của cấp số cộng là: \(5;5+d;5+2d\)
Gọi 3 số hạng của cấp số nhân là: \(5;5q;5q^2\).
Ta có hệ sau:\(\left\{{}\begin{matrix}5+2d=5q^2\\5+d=5q+10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5+2d=5q^2\\d=5q+5\end{matrix}\right.\)\(\Rightarrow5+2.\left(5q+5\right)=5q^2\)\(\Rightarrow\left\{{}\begin{matrix}q=-1\\q=3\end{matrix}\right.\).
Với \(q=-1\) thì \(d=5.q+5=5.\left(-1\right)+5=0\).
Với \(q=3\) thì \(d=5.q+5=5.3+5=20\).
Vậy
Với \(q=-1\):
3 số hạng của cấp số cộng là: 5; 5; 5.
3 số hạng của cấp số nhân là: 5; - 5; 5.
Với \(q=3\):
3 số hạng của cấp số cộng là: 5; 25; 45.
3 số hạng của cấp số nhân là: 5; 15; 45.
Tìm số hạng đầu của cấp số nhân có bốn số hạng, biết tổng ba số hạng đầu bằng 16 4 9 , đồng thời theo thứ tự, chúng là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng.
A. 4
B. 16/9
C. 2/3
D. -1
Chọn A
Gọi u1,u2,u3,u4 là 4 số hạng đầu tiên của cấp số nhân, với công bội q. gọi (vn) là cấp số cộng tương ứng với công sai là d. Theo giả thuyết Ta có:
u 1 + u 2 + u 3 = 16 4 9 u 1 = v 1 u 2 = v 4 = v 1 + 3 d u 3 = v 8 = v 1 + 7 d ⇔ u 1 + u 1 q + u 2 q 2 = 16 4 9 1 u 1 q = u 1 + 3 d 2 u 1 q 2 = u 1 + 7 d 3
Khử d từ (2) và (3) ta thu được:
7 u 1 q = 7 u 1 + 21 d 3 u 1 q 2 = 3 u 1 + 21 d
Lấy vế trừ vế ta thu được
7 u 1 q − 3 u 1 q 2 = 4 u 1 ⇔ u 1 . 3 q 2 − 7 q + 4 = 0 ⇔ u 1 = 0 3 q 2 − 7 q + 4 = 0
Do u 1 ≠ 0 ⇒ q = 1 q = 4 3
Theo định nghĩa cấp số nhận thì q ≠ 1 . Do đó q = 4 3
Thay q = 4 3 vào (1) ta được u 1 = 4
Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 6 và công bội q = 2. Số hạng thứ tư của cấp số nhân đó bằng
A. 24
B. 96
C. 12
D. 48