Tìm trên mỗi nhánh của đồ thị C : y = 4 x - 9 x - 3 các điểm M 1 , M 2 để độ dài M 1 M 2 đạt giá trị nhỏ nhất, giá trị nhỏ nhất đó bằng
A. 2 5
B. 2 2
C. 2 6
D. 3 2
Tìm m để đường thẳng y = x + m d cắt đồ thị hàm số y = 2 x + 1 x − 2 C thuộc hai nhánh của đồ thị C .
A. m ∈ ℝ
B. m > − 1 2
C. m < − 1 2
D. m ∈ ℝ \ − 1 2
Đáp án A
Phương trình hoành độ giao điểm (C ) và (d) là
2 x + 1 x − 2 = x + m ⇔ x ≠ 2 x 2 + m − 4 x − 2 m − 1 = 0 f x *
Để (C )cắt (d) tại hai điểm phân biệt ⇔ * có 2 nghiệm phân biệt khác 2.
⇔ f 2 ≠ 0 Δ * > 0 ⇔ 2 2 + 2. m − 4 − 2 m − 1 ≠ 0 m − 4 2 + 4 2 m + 1 > 0 ⇔ m 2 + 20 > 0 ⇔ m ∈ ℝ
Khi đó, gọi x 1 , x 2 là hoành độ giao điểm của ( C) và ( d), thỏa mãn hệ thức
x 1 + x 2 = 4 − m x 1 x 2 = − 2 m − 1 .
Theo bài ta, ta có
x 1 < 2 < x 2 ⇔ x 1 − 2 < 0 x 2 − 2 > 0 ⇔ x 1 − 2 x 2 − 2 < 0.
⇔ x 1 x 2 − 2 x 1 + x 2 + 4 < 0 ⇔ − 2 m − 1 − 2 4 − m + 4 < 0 ⇔ − 5 < 0
(luôn đúng).
Vậy với mọi giá trị của m đều thỏa mãn yêu cầu bài toán.
Tìm m để đường thẳng y= x+m (d) cắt đồ thị hàm số y= 2 x + 1 x - 2 (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị (C)
A. m ∈ R
B. m ∈ R \ { - 1 / 2 }
C. m > - 1 / 2
D. m < - 1 / 2
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.
B.
C.
D.
Gọi A, B là hai điểm thuộc hai nhánh khác nhau trên đồ thị (C) của hàm số y = x + 3 x − 3 , độ dài ngắn nhất của đoạn thẳng AB là
A. 2
B. 4
C. 3
D. 2 3
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Cho ba hàm số:
y = 1 2 x 2 ; y = x 2 ; y = 2 x 2
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm A, B, C có cùng hoành độ x = -1,5 theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm A’ ; B’ ; C’ có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A’ ; B và B’ ; C và C’.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
a) Bảng giá trị tương ứng của x và y:
Vẽ đồ thị:
Trên mặt phẳng lưới lấy các điểm (-2; 2); (-1; ½); (0; 0); (1; 1/2); (2; 2), nối chúng thành một đường cong ta được đồ thị hàm số y = ½.x2.
Lấy các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4), nối chúng thành một đường cong ta được đồ thị hàm số y = x2.
Lấy các điểm (-2; 8); (-1; 2); (0; 0); (1; 2); (2; 8), nối chúng thành một đường cong ta được đồ thị hàm số y = 2x2.
b) Lấy các điểm A, B, C lần lượt nằm trên 3 đồ thị và có hoành độ bằng -1,5.
Từ điểm (-1,5;0) nằm trên trục hoành ta kẻ đường thẳng song song với Oy. Đường thẳng này cắt các đồ thị lần lượt tại các điểm A,B,C.
Gọi yA,yB,yC lần lượt là tung độ của các điểm A,B,C. Ta có:
Khi đó tung độ điểm A bằng 9/8; tung độ điểm B bằng 9/4; tung độ điểm C bằng 9/2
c)
Lấy các điểm A’, B’, C’ lần lượt nằm trên 3 đồ thị và có hoành độ bằng 1,5.
Từ điểm (1,5;0) nằm trên trục hoành ta kẻ đường thẳng song song với Oy. Đường thẳng này cắt các đồ thị lần lượt tại các điểm A,B,C.
Gọi yA,yB,yC lần lượt là tung độ của các điểm A,B,C. Ta có:
Khi đó
Nhận xét: A và A’; B và B’; C và C’ đối xứng nhau qua trục Oy.
d) Hàm số có giá trị nhỏ nhất ⇔ y nhỏ nhất.
Dựa vào đồ thị nhận thấy cả ba hàm số đạt y nhỏ nhất tại điểm O(0; 0).
Vậy ba hàm số trên đều đạt giá trị nhỏ nhất tại x = 0.
Gọi A, B là 2 điểm lần lượt thuộc 2 nhánh của đồ thị hàm số y = x + 1 x - 1 (C). Tìm khoảng cách ngắn nhất giữa hai điểm A, B
A. 16
B. 2 2
C. 2
D. 4
Cho hàm số y=f(x)=2/3.x
a) Tìm f(7); f(-5/4)
b)Tìm x khi y=10
c)Tìm x khi f(x)=8
d)Vẽ đồ thị hàm số trên.
e) Hỏi điểm P(9;16) có thuộc đồ thị hàm số y=2/3 x ko?
g) Tìm điểm K và H trên đồ thị hàm số y=2/3x biết xK =6,yH =4.
Cho hàm số y=kx có đồ thị đi qua điểm A(1;-4)
a) Tìm k và vẽ đồ thị hàm số trên.
b) Trong các điểm sau, điểm nào thuộc đồ thị hàm số trên? Vì sao?
M(-1;-4); N(5;-20); P(-3;12)
c) Tìm x khi y=8, y=-4/5, y=1/4
\(a,\text{Thay }x=1;y=-4\Leftrightarrow k=-4\\ \Rightarrow y=-4k\\ b,\text{Thay tọa độ các điểm vào đt: }\left\{{}\begin{matrix}x=-1;y=-4\Rightarrow-4=\left(-4\right)\left(-1\right)\left(loại\right)\\x=5;y=-20\Rightarrow-20=5\left(-4\right)\left(nhận\right)\\x=-3;y=12\Rightarrow12=\left(-3\right)\left(-4\right)\left(nhận\right)\end{matrix}\right.\\ \text{Vậy }N\left(5;-20\right);P\left(-3;12\right)\in y=-4x\)
Cho hàm số y=kx có đồ thị đi qua điểm A(1;-4)
a) Tìm k và vẽ đồ thị hàm số trên.
b) Trong các điểm sau, điểm nào thuộc đồ thị hàm số trên? Vì sao?
M(-1;-4); N(5;-20); P(-3;12)
c) Tìm x khi y=8, y=-4/5, y=1/4
a: Thay x=1 và y=-4 vào (d), ta được:
k=-4