Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2020 lúc 15:29

ĐKXĐ: \(0\le x\le4\) ;\(x\ne2\)

\(\Leftrightarrow\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{4-x}\right)}{x-2}=2x-3\)

\(\Leftrightarrow x+\sqrt{4x-x^2}=2x^2-7x+6\)

\(\Leftrightarrow2\left(4x-x^2\right)+\sqrt{4x-x^2}-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x-x^2}=-2\left(loại\right)\\\sqrt{4x-x^2}=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow4x-x^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{7}}{2}\\x=\dfrac{4-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow abc\)

Sawada Tsunayoshi
Xem chi tiết
nnhivux(phốc)
22 tháng 3 2019 lúc 21:30

kb nhé

Nguyễn Thị Quỳnh Anh
8 tháng 5 2019 lúc 20:37

12345x331=...///???......................ai nhanh  mk tk cho

Nguyễn Thị Quỳnh Anh
8 tháng 5 2019 lúc 20:41

mk ko biet dang  cau  hoi nen phai the thoi mong  cac ban thon  cam

Khôi
Xem chi tiết
Đỗ Thủy Tiên _2108
Xem chi tiết
kudo shinichi
1 tháng 3 2019 lúc 19:31

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

kudo shinichi
1 tháng 3 2019 lúc 20:18

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

kudo shinichi
2 tháng 3 2019 lúc 16:30

\(2x^3-9x^2+2x+1\)

\(=2x^3-x^2-8x^2+4x-2x+1\)

\(=x^2\left(2x-1\right)-4x\left(2x-1\right)-\left(2x-1\right)\)

\(=\left(2x-1\right)\left(x^2-4x-1\right)\)

\(=\left(2x-1\right)\left(x^2-4x+4-5\right)\)

\(=\left(2x-1\right)\left[\left(x-2\right)^2-5\right]\)

.......

Hoàng Ngọc nhi
Xem chi tiết
Akai Haruma
19 tháng 4 2021 lúc 17:23

Lời giải:

a) $f(x)=x^5-3x+3$ liên tục trên $R$

$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$

Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$

Nghĩa là pt đã cho luôn có nghiệm.

b) $f(x)=x^5+x-1$ liên tục trên $R$

$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$

Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$

Hay pt đã cho luôn có nghiệm.

c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$

$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$

$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$

Hay pt đã cho luôn có nghiệm.

ManDoo Ami 태국
Xem chi tiết
Akai Haruma
13 tháng 8 2021 lúc 1:02

Lời giải:
$(P):y=x^2+bx+2$ đi qua $(3;-4)$ nên:

$-4=3^2+b.3+2\Rightarrow b=-5$

Vậy pt cần tìm là $y=x^2-5x+2$

Vậy thì trục đối xứng $x=\frac{-3}{2}$ có vẻ thừa?

vũ mai lan
Xem chi tiết
Oanh Nguyễn
Xem chi tiết
Nguyễn Tuấn
22 tháng 5 2016 lúc 21:19

a) đenta=b^2-4c

2b+4c=-1=>c=-1-2b)/4

thay vô chứng minh nó lớn hơn 0

Nguyễn Tuấn
22 tháng 5 2016 lúc 21:24

x1+x2=b

x1x2=c

ta có x1=2x2

thay vô tìm x1;x2 theo b,c rồi thay vô 

mk tính được x1=2x;x2=b/3 thay cái này vô x1-2x2=0 tìm ra b

x1=căn(c/2);x2=căn(2c) thay vô cái x1-2x2=0 tìm ra c

Thanh Linh
Xem chi tiết
Lê Thị Thục Hiền
3 tháng 6 2021 lúc 22:08

Áp dụng viet vào pt \(x^2+px+1=0\) ta được:\(\left\{{}\begin{matrix}a+b=-p\\ab=1\end{matrix}\right.\)

Áp dụng viet vào pt \(x^2+qx+2=0\) ta được:\(\left\{{}\begin{matrix}b+c=-q\\bc=2\end{matrix}\right.\)

\(A=pq-\left(b-a\right)\left(b-c\right)=-\left(a+b\right).-\left(b+c\right)-\left(b^2-bc-ab+ac\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

\(=2ab+2bc=6\)

Vuy năm bờ xuy
3 tháng 6 2021 lúc 22:16

Phương trình: \(x^2+px+1=0\)

Có 2 nghiệm:a,b

\(\Rightarrow\left\{{}\begin{matrix}a+b=-p\\a.b=1\end{matrix}\right.\)                    \(\Leftrightarrow\left\{{}\begin{matrix}p=-\left(a+b\right)\\1=a.b\end{matrix}\right.\)

Phương trình \(x^2+px+2=0\)

Có 2 nghiệm:b,c

\(\Rightarrow\left\{{}\begin{matrix}b+c=-q\\b.c=2\end{matrix}\right.\)                     \(\Leftrightarrow\left\{{}\begin{matrix}q=-\left(b+c\right)\\2=b.c\end{matrix}\right.\)

Ta có: \(p.q-\left(b-a\right)\left(b-c\right)\)

\(=-\left(a+b\right).\left[-\left(b+c\right)\right]-\left(b-a\right)\left(b-c\right)\)

\(=\left(a+b\right)\left(b+c\right)-\left(b-a\right)\left(b-c\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

=\(\left(ab+ab\right)+\left(ac-ac\right)+\left(b^2-b^2\right)+\left(bc+bc\right)\)

\(=2ab+2bc\)

\(=2.1+2.2\)

=6

-Chúc bạn học tốt-

 

Nguyễn Yến Vy
Xem chi tiết
Kuro Kazuya
24 tháng 3 2017 lúc 22:43

\(ax^2+bx+c=0\)

Do phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)

\(\Rightarrow b,c\) trái đấu

Xét \(cx^2+bx+a=0\)

Giả sử phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )

Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt

\(\Rightarrow\) đpcm

Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )

Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )

Từ ( 1 ) và ( 2 )

Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )