Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
_ɦყυ_
Xem chi tiết
Hoa Thiên Cốt
Xem chi tiết

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

Khách vãng lai đã xóa
Tiến Hoàng
Xem chi tiết
phạm tùng lâm
Xem chi tiết

Đề sai , đường trung trực của BC cắt AB tại F rồi nên 

=> A,B,F thẳng hàng , do đó , k thể xuất hiện tam giác ABF

_Vi hạ_

leanhduy123
Xem chi tiết
leanhduy123
Xem chi tiết
Huyền thoại Amaya
Xem chi tiết
Ngoc Linh Dang
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 22:36

b: Ta có: D nằm trên đường trung trực của BC

nên DB=DC

misu
Xem chi tiết
Nguyễn Thị Linh Giang
24 tháng 5 2019 lúc 13:15

A C H F E D B

A.Xét ΔABE và ΔDBE có:

Cạnh BE chung

BD = BA

⇒ ΔABE = ΔDBE (cạnh huyền – góc nhọn) 

b. Do BD = BA nên B nằm trên đường trung trực của AD

Do ΔABE = ΔDBE ⇒ AE = ED (hai cạnh tương ứng)

E nằm trên đường trung trực của AD 

Vậy BE là đường trung trực của AD

c. Do ΔABE = ΔDBE ⇒ ∠(ABE) = ∠(EBC) (hai góc tương ứng)

Suy ra BE là tia phân giác của góc ABC 

Nguyễn Thị Linh Giang
24 tháng 5 2019 lúc 13:15

HÌNH VẼ HƠI LỆCH 1 TÍ NHA

Edogawa Conan
24 tháng 5 2019 lúc 13:27

A B C D H F E

CM: Xét t/giác ABE và t/giác DBE

có AB = BD (gt)

  góc BAE = góc BDE = 90 độ (gt)

    BE : chung

=> t/giác ABE = t/giác DBE (ch - cgv)

b) Ta có: t/giác ABE = t/giác DBE (cmt)

=> AE = ED  (hai cạnh tương ứng)

=> E thuộc đường trung trực của AD (t/c đường trung trực) (1)

Ta lại có: AB = BD (gt)

=> B thuộc đường trung trực của AD (2) (T/c đường trung trực)

Mà điểm B khác điểm E (3)  

Từ (1) ; (2); (3) suy ra BE là đường trung trực của AD

c) Ta có: t/giác ABE = t/giác DBE (cmt)

=> góc ABE = góc DBE (hai góc tương ứng)

=> BE là tia p/giác của góc ABD

hay BE là tia p/giác của t/giác ABC