tìm x, y biết:
\(\left(3x-5\right)^{2008}+\left(5y+3\right)^{2010}<=0\)
tìm các số x,y,z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
Tìm x biết: \(^{\left(3x-5\right)^{2008}}\)+ \(^{\left(y^2-1\right)^{2010}}\)+ \(^{\left(x-z\right)^{2012}}\)= 0
Ta có \(\hept{\begin{cases}\left(3x-5\right)^{2008}\ge0\\\left(y^2-1\right)^{2010}\ge0\\\left(x-z\right)^{2012}\ge0\end{cases}}\)mà \(\left(3x-5\right)^{2008}+\left(y^2-1\right)^{2010}+\left(x-z\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{2008}=0\\\left(y^2-1\right)^{2010}=0\\\left(x-z\right)^{2012}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1;-1\\z=x=\frac{5}{3}\end{cases}}\)
Bài 1 : Tìm x biết :
\(\left|\left|3x-3\right|+2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
Bài 2 . Tìm Gía trị nhỏ nhất của biểu thức :
\(A=\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
Các bạn học giỏi vào giúp ạ !!!
Tìm x, y biết : \(\left(\dfrac{3x-5}{9}\right)^{2006}+\left(\dfrac{3y+0.4}{3}\right)^{2008}\)
Tìm y
a) \(y^{200}=y\)
b)\(y^{2008}=y^{2010}\)
c)\(\left(2y-1\right)^{50}=2y-1\)
d)\(\left(\dfrac{y}{3}-5\right)^{2000}=\left(\dfrac{y}{3}-5\right)^{2008}\)
\(a,\Leftrightarrow y^{200}-y=y\left(y^{199}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y^{199}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)
Vậy ..
\(b,\Leftrightarrow y^{2010}-y^{2008}=y^{2008}\left(y^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^{2008}=0\\y^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\\y=-1\end{matrix}\right.\)
Vậy ...
\(c,\Leftrightarrow\left(2y-1\right)^{50}-\left(2y-1\right)=\left(2y-1\right)\left(\left(2y-1\right)^{49}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2y-1=0\\\left(2y-1\right)^{49}=1\end{matrix}\right.\)
\(\Leftrightarrow y=\dfrac{1}{2}\)
Vậy ..
\(d,\Leftrightarrow\left(\dfrac{y}{3}-5\right)^{2008}\left(\left(\dfrac{y}{3}-5\right)^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{y}{3}-5\right)^{2008}=0\\\left(\dfrac{y}{3}-5\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{y}{3}-5=0\\\dfrac{y}{3}-5=1\\\dfrac{y}{3}-5=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=15\\y=18\\y=12\end{matrix}\right.\)
Vậy ..
Bài 1 : Tìm x biết :
\(\left|\left|3x-3\right|+2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
Bài 2 :
Tìm giá trị nhỏ nhất của biểu thức :
\(A=\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
Các bạn học giỏi vào giúp ạ !!!
Nhanh lên nhé mình xin các bạn đấy
Tìm x;y biết \(\left(2x-5\right)^{2008}+\left(3y+4\right)^{2010}\le0\)
(2x-5)^2008 > 0
(3y+4)^2010 > 0
=>(2x-5)^2008+(3y+4)^2010>0
mà theo đề:(2x-5)^2008+(3y+4)^2010 < 0
=>(2x-5)^2008=(3y+4)^2010=0
+)(2x-5)^2008=0=>2x=5=>x=5/2
+)(3y+4)^2010=0=>3y=-4=>y=-4/3
Vậy...
vì 2008và 2010 chẵn nên (2x-5)^2008 và(3y+4)^2010> hoac = 0Vậy=0
x=5/2 và y =-4/3
Tìm x;y;z biết
\(\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)
VÌ \(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=z\\x=1\\y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}}\)
Tìm x,y,z biết
\(\left(3x-2y\right)^{2010}+\left|5y-6z\right|^{2011}=0\)và \(2x-5y+3z=54\)
CM : ( 3x - 2y )^2010 = 0 , / 5y - 6z /^2011 = 0
=> 3x - 2y = 0 , 5y - 6z = 0
=> 3x = 2y , 5y = 6z
=> x/2 = y/3 , y/6 = z/5
=> x/4 = y/6 , y/6 =z/5
=> x/4 = y/6 = z/5
=> 2x/ 8 , 5y/30 , 3z/15
Áp dụng tính chất DTSBN , ta có :
2x/8 = 5y /30 = 3z / 15 = 2x - 5y + 3z / 8 - 30 + 15 = 54/-7 = -54 /7
Rồi tính ra là xong