Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hứa Suất Trí
Xem chi tiết
Nguyễn Hữu Triết
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

❤  Hoa ❤
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

❤  Hoa ❤
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)

Dan_hoang
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 12 2021 lúc 7:07

\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 3:58

Phân thức được xác định khi biến x thỏa mãn B(x) ≠ 0.

Nhathuynh Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 14:13

a: ĐKXĐ: x<>-3

b: =x+3

Xem chi tiết

x2&#x2212;10x+25x2&#x2212;5x=(x&#x2212;5)2x(x&#x2212;5)=x&#x2212;5x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

x&#x2212;5x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x−5x phải có giá trị nguyên.

x+12x&#x2212;2+3x2&#x2212;1&#x2212;x+32x+2)&#x22C5;(4x2&#x2212;45)" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

x+12(x&#x2212;1)+3(x&#x2212;1)(x+1)&#x2212;x+32(x+1))&#x22C5;2(2x2&#x2212;2)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

(x+1)2+6&#x2212;(x&#x2212;1)(x+3)2(x&#x2212;1)(x+1)&#x22C5;2&#x22C5;2(x2&#x2212;1)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

(x+1)2+6&#x2212;(x2+3x&#x2212;x&#x2212;3)(x&#x2212;1)(x+1)&#x22C5;2(x&#x2212;1)(x+1)5" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25

25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25

25" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">25

2(x+1)25+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2(x+1)25+185−25x2−45x

2(x2+2x+1)5+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2(x2+2x+1)5+185−25x2−45x

2x2+4x+25+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+25+185−25x2−45x

2x2+4x+2+185&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+2+185−25x2−45x

2x2+4x+205&#x2212;25x2&#x2212;45x" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax">2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

Khách vãng lai đã xóa
nguyễn hải đăng
19 tháng 12 2019 lúc 21:50

ê k bn với mk ik

😘 😘 😘 😘

Trinhdiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:09

a: ĐKXĐ: \(x\notin\left\{0;10;-10\right\}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2019 lúc 13:13

a) Tìm được x -6 và x  ≠  0.

b) Gợi ý: x 3  + 4 x 2  - 6x + 36 = (x + 6) ( x 2  - 2x + 6)

Tìm được  P = x 2 − 2 x + 6 2 x

c) Ta có P = 3 2 ⇔ x 2 − 5 x + 6 = 0 . Từ đó tìm được x = 2 hoặc x = 3 (TMĐK).

d) Tương tự câu c, tìm được x = -6 (KTM) hoặc x = -1 (TM)

e) P = 1 Þ  x 2 ‑ - 4x + 6=  0 Û ( x -   2 ) 2 + 2 = 0 (vô nghiệm)

Vì  ( x -   2 ) 2  + 2 2 > 0 với mọi x. Do vậy x ∈ ∅ .

Tin Nguyễn Thị
Xem chi tiết
Đoàn Đức Hà
25 tháng 12 2022 lúc 17:34

a) Điều kiện xác định của \(P\) là: 

\(\left(x+1\right)\left(2x-6\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) (\(x\ne-1,x\ne3\))

\(=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)

\(P=1\Rightarrow\dfrac{3x}{2\left(x-3\right)}=1\Rightarrow3x=2\left(x-3\right)\Leftrightarrow x=-6\) (thỏa mãn) 

c) \(P>0\Rightarrow\dfrac{3x}{2\left(x-3\right)}>0\Leftrightarrow\dfrac{x}{x-3}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)

Kết hợp với điều kiện xác định ta được để \(P>0\) thì \(x>3\) hoặc \(x< 0,x\ne-1\).