Rút gọn biểu thức A = sin 2 x + sin 3 x + sin 4 x cos 2 x + cos 3 x + c o s 4 x ta được:
A. A = c o t 3 x
B. A = tan 3 x
C. A = 2 tan 3 x
D. A = tan x
Biểu thức A= 4sinx.sin( 60 độ-x).sin(60 độ+x) rút gọn bằng bao nhiêu.
`A= sinx. sin(60^o - x) . sin (60^o +x)`
`= sinx . 1/2(cos2x - cos120^o)`
`=sinx . 1/2 cos 2x + 1/4 sinx`
\(A=4sinx.sin\left(60^0-x\right).sin\left(60^0+x\right)\)
\(=2.sinx.\left(cos2x-cos120^0\right)\)
\(=2sinx\left(cos2x+\dfrac{1}{2}\right)\)
\(=2sinx.cos2x+sinx\)
- Quên số 4. =(((((
`A=4(sinx . 1/2 cos 2x + 1/4 sinx)`
`=2sinxcos2x+sinx`
Cho biểu thức A=\(\dfrac{1}{x-1}\)+\(\dfrac{3x^2}{1-x^3}\)+\(\dfrac{2x}{x^2+x+1}\)với x≠1
a) Rút gọn biểu thức A
b)Chứng minh với mọi x≠1 thì biểu thức A luôn nhận giá trị âm
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
Cho biểu thức : A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết \(x=-\dfrac{1}{2}\)
c, Tính giá trị của x để A<0
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
a) (x + 2) (x – 5) – x 2 + 3x.
b) (x + 1)2 – (x + 1) (x – 1).
rút gọn biểu thức
\(a,=x^2-3x-10-x^2+3x=-10\\ b,=\left(x+1\right)\left(x+1-x+1\right)=2\left(x+1\right)=2x+2\)
A = ( x - 1 )( x + 1) + ( x + 2 ) ( x^2 + 2x + 4 ) - x ( x^2 + x + 2 )
a. Rút gọn biểu thức
b. Tính giá trị biểu thức A tại x = 1/2
a) \(A=\left(x-1\right).\left(x+1\right)+\left(x+2\right).\left(x^2+2x+4\right)-x.\left(x^2+x+2\right)\)
\(=x^2-1+x^3+2x^2+4x+2x^2+4x+8-x^3-x^2-2x\)
\(=\left(x^3-x^3\right)+\left(x^2+2x^2+2x^2-x^2\right)+\left(4x+4x-2x\right)+\left(-1+8\right)\)
\(=4x^2+6x+7\)
b) Thay vào ta được
\(A=4.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}+7=1+3+7=11\)
a) (1,0 điểm) (x – 1)(2x + 3) – 2x 2 + 3x.
b) (1,0 điểm) (x + 3)2 – (x + 2) (x – 2).
rút gọn biểu thức, trình bày ra lun
b: \(=x^2+6x+9-x^2+4=6x+13\)
Rút gọn biểu thức : C= |x-2| + |x+1|
Uk đó bạn, mình nghĩ biểu thức này x không cần điều kiện đâu.
Rút gọn biểu thức A = sin π + x - cos π 2 - x + tan 3 π 2 - x + c o t 2 π - x , ta được
A. A = 2 sin x
B. A = - 2 sin x
C. A = 2 c o t x
D. A = - 2 c o t x
A = sin π + x - cos π 2 - x + tan 3 π 2 - x + c o t 2 π - x = - s i n x - sin x + tan π + π 2 - x + c o t - x = - 2 sin x + c o t x - c o t x = - 2 sin x
Chọn B.
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0