Cho hình thang cân ABCD (AB//CD) . Gọi O là giao điểm của AC và BD . C/m rằng OC = OD , OA = OB
Cho hình thang cân ABCD có AD // BC, AB = DC. gọi O là giao điểm 2 đường chéo AC và BD . C/m OA = OC OB = OD
cho hình thang cân ABCD(AB // CD) AB<CD.Gọi O là giao điểm của AC và BD, I là giao điểm của AD và BC chứng minh :
a) OA=OB, OD=OC
b )Gọi M,N lần lượt là trung điểm AB và CD .CM I, O, M ,N thẳng hàng
Cho hình thang cân ABCD (AB//CD, AB<CD), O là giao điểm của AC và BD, I là giao điểm của AD và BC
a)Chứng minh OA=OB, OC=OD
b)Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh I, M, O, N thẳng hàng
a: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: OC+OA=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB
Cho hình thang cân ABCD, O là giao điểm của AC và BD, I là giao điểm của AD và BC.
a) Chứng minh rằng: OA =OB; OC=OD (mình giải đc rồi)
b) Gọi M, N lần lượt là trung điểm của các cạnh AB, DC. Chứng minh rằng: I, M, O, N thẳng hàng
a) Xét ∆ACD và ∆BDC ta có :
DC chung
BC = AD (ABCD là hình thang cân )
ADC = BCD ( ABCD là hình thang cân)
=> ∆ACD = ∆BDC (c.g.c)
=> BDC = ACD (tg ứng)
=> ∆DOC cân tại O
=> OC = OD
Mà AB//DC
ABO = ODC ( so le trong)
BAO = OCN (so le trong)
Mà BDC = ACD (cmt)
=> OAB = ABO
=> ∆AOB cân tại O
=> OA = OB
b) Xét ∆OND và ∆ONC ta có
OC = OD (cmt)
ODC = ONC (cmt)
ON chung
=> ∆OND = ∆ONC (c.g.c)
=> DN = NC(1)
Mà OND + ONC = 180 độ( kề bù)
Mà OND = ONC = 180/2 = 90 độ
=> ON vuông góc với AC(2)
Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)
Chứng minh tương tự ta có :
∆OMA = ∆OMB
=> AM = MB(4)
=> OMB + OMA = 180 độ(kề bù )
=> OMB = OMA = 180/2 = 90 độ
=> OM vuông góc với AB(5)
Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)
Từ (3) và (5) => M , O , N thẳng hàng
Cho ABCD là hình thang cân (AB//CD)gọi O là giao điêm cua 2 đương chéo AC,BD
CMR OA=OB,OC=OD
Cho hình thang cân ABCD ( AB // CD, AB < CD ), O là giao điểm của hai đường chéo, I là giao điểm của AD và BC.
a, C/minh: OA = OB, OC = OD.
b, Gọi M, N lần lượt là trung điểm các cạnh AB; CD. CMR: I, M, O, N thẳng hàng.
Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA = OB, OC = OD.
Xét ∆ ADC và ∆ BCD, ta có:
AD = BC (tính chất hình thang cân)
∠ (ADC) = ∠ (BCD) (gt)
DC chung
Do đó: ∆ ADC = ∆ BCD (c.g.c) ⇒ ∠ C 1 = ∠ D 1
Trong ∆ OCD ta có: ∠ C 1 = ∠ D 1 ⇒ ∆ OCD cân tại O ⇒ OC = OD (1)
AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)
Từ (1) và (2) suy ra: AO = BO.
Cho hình thang cân ABCD ( AB // CD ) Gọi O là giao điểm của AC và BD
a) C/m OA = OB; OC = OD
b) Gọi M;N là trung điểm AB và CD
C/m M; N; O thẳng hàng
Các bạn giúp mình với, cần gấp lắm .
mik làm tắt thôi có gì bạn trình bày lại
a,trong hình thang ABCD cân thì 2 đường chéo AC=BD
và 2 cạnh bên bằng nhau AD=BC
mà DC chung=>\(\Delta ADC=\Delta BDC\left(c.c.c\right)\)
=>\(\angle\left(D1\right)=\angle\left(C1\right)\)\(=>\Delta ODC\) cân tại O=>OD=OC
mà \(AB//CD=>\left\{{}\begin{matrix}\angle\left(ABO\right)=\angle\left(D1\right)\\\angle\left(BAO\right)=\angle\left(C1\right)\end{matrix}\right.\)(so le trong)
\(=>\angle\left(ABO\right)=\angle\left(BAO\right)\)\(=>\Delta OAB\) cân tại O=>OA=OB
b, do \(\Delta OAB\) cân tại O có OM là trung tuyến nên cũng là đường cao
tương tự thì ON cũng là đường cao
\(=>\left\{{}\begin{matrix}OM\perp AB\\ON\perp CD\end{matrix}\right.\) mà \(AB//CD=>M;N;O\) thẳng hàng
hình thang cân ABCD có AB // CD , O là giao điểm của hai đường chéo. Chứng minh rằng OA =OB , OC = OD