Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2018 lúc 9:44

Đáp án đúng : C

Hiếu Thông Minh
Xem chi tiết
Trang Hải
Xem chi tiết
Camthe Thi
Xem chi tiết
Nguyễn Đức Anh
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Khách vãng lai đã xóa
Phạm Mạnh Hùng
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Phạm Anh Tuấn
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Khách vãng lai đã xóa
Fujika Midori
Xem chi tiết
anh le
Xem chi tiết
nguyễn việt bách
Xem chi tiết
Lê Song Phương
21 tháng 4 2022 lúc 16:53

a) Xét pt đã cho có \(a=m^2+m+1\)\(b=-\left(m^2+2m+2\right)\)\(c=-1\)

Nhận thấy rằng \(ac=\left(m^2+m+1\right)\left(-1\right)=-\left(m^2+m+1\right)\)

\(=-\left(m^2+2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

Vì \(-\left(m+\dfrac{1}{2}\right)^2\le0\) và \(-\dfrac{3}{4}< 0\) nên \(-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\) hay \(ac< 0\). Vậy pt đã cho luôn có 2 nghiệm trái dấu.

b) Theo câu a, ta đã chứng minh được pt đã cho luôn có 2 nghiệm trái dấu \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(S=x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m^2+2m+2\right)}{m^2+m+1}=\dfrac{m^2+2m+2}{m^2+m+1}\)

Nhận thấy \(m^2+m+1\ne0\) nên ta có:

\(\left(m^2+m+1\right)S=m^2+2m+2\) \(\Leftrightarrow Sm^2+Sm+S-m^2-2m-2=0\)\(\Leftrightarrow\left(S-1\right)m^2+\left(S-2\right)m+\left(S-2\right)=0\)(*)

pt (*) có \(\Delta=\left(S-2\right)^2-4\left(S-1\right)\left(S-2\right)\)\(=S^2-4S+4-4\left(S^2-3S+2\right)\)\(=S^2-4S+4-4S^2+12S-8\)\(=-3S^2+8S-4\)

Để pt (*) có nghiệm thì \(\Delta\ge0\) hay \(-3S^2+8S-4\ge0\)\(\Leftrightarrow-3S^2+6S+2S-4\ge0\)\(\Leftrightarrow-3S\left(S-2\right)+2\left(S-2\right)\ge0\) \(\Leftrightarrow\left(S-2\right)\left(2-3S\right)\ge0\)

Ta xét 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}S-2\ge0\\2-3S\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\ge2\\S\le\dfrac{2}{3}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}S-2\le0\\2-3S\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\le2\\S\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\dfrac{2}{3}\le S\le2\) (nhận)

Khi \(S=\dfrac{2}{3}\) thì (*) \(\Leftrightarrow\left(\dfrac{2}{3}-1\right)m^2+\left(\dfrac{2}{3}-2\right)m+\dfrac{2}{3}-2=0\)\(\Leftrightarrow-\dfrac{1}{3}m^2-\dfrac{4}{3}m-\dfrac{4}{3}=0\)\(\Leftrightarrow m^2+4m+4=0\)

\(\Leftrightarrow\left(m+2\right)^2=0\) \(\Leftrightarrow m+2=0\) \(\Leftrightarrow m=-2\)

Khi \(S=2\) thì (*) \(\Leftrightarrow\left(2-1\right)m^2+\left(2-2\right)m+2-2=0\)\(\Leftrightarrow m^2=0\)

  \(\Leftrightarrow m=0\)

Vậy GTNN của S là \(\dfrac{2}{3}\) khi \(m=-2\) và GTLN của S là \(2\) khi \(m=0\)

 

Nguyễn Minh Quân
Xem chi tiết
Trần Tuấn Hoàng
11 tháng 2 2023 lúc 20:24

Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.

Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình ẩn m tham số C, ta có:

\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)

Để phương trình (2) có nghiệm thì:

\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)

\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)

\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)

Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 13:16

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

Ngân Hoàng Trường
Xem chi tiết
Phước Nguyễn
14 tháng 3 2017 lúc 22:29

Ko thì ko lời giải

\(------------\)

Sai đề hử?