Tìm x
1+x=2+x
Mình không nhìn thấy đc đề bạn ơi, bạn xem lại đề !!
Cho M = 1 - (2x−1+√x1−x+2x√x+x−√x1+x√x)(2x−1+x1−x+2xx+x−x1+xx)((x−√x)(1−√x)2√x−1)((x−x)(1−x)2x−1)
a,Rút gọn M
b,Tìm x thuộc Z sao cho M thuộc Z
Bạn ghi lại đề đi bạn, khó hiểu quá!
Cho phương trình: \(x^2-4x+2m=0\) (x là ấn phụ)
a) Tìm m để phương trình có 2 nghiệm x1 và x2
b) Gọi x1 và x2 là 2 nghiệm của phương trình trên. Tìm m để \(x1^2+x2^2-x1-x2=16\)
a.
Phương trình có 2 nghiệm khi:
\(\Delta'=4-2m\ge0\Rightarrow m\le2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow16-4m-4=16\)
\(\Leftrightarrow m=-1\) (thỏa mãn)
a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)
Để pt có nghiệm x1, x2 thì \(\Delta>0\)
\(\Leftrightarrow16-8m>0\)
\(\Leftrightarrow-8m>-16\)
\(\Leftrightarrow m< 2\)
b.
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow4^2-2.2m-4-16=0\)
\(\Leftrightarrow-4m-4=0\)
\(\Leftrightarrow m=-1\)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
TÌM m để pt x^2 -(m-1)x-2 thoả mãn x1/x2=x2^2-3/x1^2-3
Cho phương trình x^2-2(m-1)x+m+1=0.Tìm để pt co 2 nghiệm x1, x2 thoả mãn x1/x2+x2/x1=4.
Ptr có `2` nghiệm `<=>\Delta' >= 0`
`<=>[-(m-1)]^2-(m+1) >= 0`
`<=>m^2-2m+1-m-1 >= 0`
`<=>m(m-3) >= 0<=>[(m <= 0),(m >= 3):}`
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=m+1):}`
Ta có: `[x_1]/[x_2]+[x_2]/[x_1]=4`
`<=>[x_1 ^2+x_2 ^2]/[x_1.x_2]=4`
`<=>[(x_1+x_2)^2-2x_1.x_2]/[x_1.x_2]=4`
`<=>[(2m-2)^2-2(m+1)]/[m+1]=4` `(m ne -1)`
`=>4m^2-8m+4-2m-2=4m-4`
`<=>4m^2-14m+8=0`
`<=>m=[7+-\sqrt{17}]/4` (ko t/m)
`=>` Ko có giá trị `m` t/m
X^2-(2m+3)x+m^2+2m+3=0 a,Tìm m để ptrinh có 2 no trái dấu b,Tìm m để ptrinh có 2 no pb t/m 4x1x2=(x1+x2)^2-2(x1+x2)+5 c,Tìm 2 no pb x1=2 và x2>4
a: Để phương trình có hai nghiệm trái dấu thì
m^2+2m+3<0
=>m^2+2m+1+2<0
=>(m+1)^2+2<0(vô lý)
b:
Δ=(2m+3)^2-4(m^2+2m+3)
=4m^2+12m+9-4m^2-8m-12
=4m-3
Để phương trình có hai nghiệm phân biệt thì 4m-3>0
=>m>3/4
4x1x2=(x1+x2)^2-2(x1+x2)+5
=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5
=>4m^2+8m+12=4m^2+12m+9-4m-6+5
=>8m+12=8m-1
=>12=-1(vô lý)
X^2-2(m-1)x-2m=0 a, Tìm m để phương trình có 2 nghiệm phân biệt t/m x1^2+x1-x2=5-2m b,Tìm m để p trình có 2 nghiệm pb t/m x1=3x2 c,Tìm m để phương trình có 2 no pb t/m x1/x2=3
b: x1=3x2 và x1+x2=2m-2
=>3x2+x2=2m-2 và x1=3x2
=>x2=0,5m-0,5 và x1=1,5m-1,5
x1*x2=-2m
=>-2m=(0,5m-0,5)(1,5m-1,5)
=>-2m=0,75(m^2-2m+1)
=>0,75m^2-1,5m+0,75+2m=0
=>\(m\in\varnothing\)
c: x1/x2=3
x1+x2=2m-2
=>x1=3x2 và x1+x2=2m-2
Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn
Tìm tham số m để phương trình x^2-2(m+1)x+m^2+2m=0 có 2 nghiệm X1,X2 (X1<X2) thỏa mãn |X1|=3|x2|
a=1
b=-2(m+1)
c=m2+2m
△'=(m+1)2-(m2+2m)1=m2+2m+1-m2-2m=1>0 ∀ m
=> pt luôn có 2n0 phân biệt ∀m
cho phương trình x^2+(n-1)x-m=0 tìm m để phương trình có 2 nghiệm x1, x2 thỏa mọi x1<x2 và x1-2x2 =2