Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 1 2019 lúc 2:17

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 1 2018 lúc 3:41

Chọn đáp án C

Hàm số y=f(x+100) có đồ thị là đồ thị hàm số y=f(x) tịnh tiến sang trái 100 đơn vị

Dựa vào đồ thị ta thấy đồ thị hàm số y=f(x) có 3 điểm cực trị.

Khi tịnh tiến sang trái 100 đơn vị thì số điểm cực trị hàm số y=f(x+100) vẫn là 3 điểm cực trị.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2017 lúc 3:04

Đáp án là A

Phương trình hoành độ giao điểm của đồ thị hàm số đã cho và trục hoành:

Đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt  (1) có 3 nghiệm phân biệt  (2) có 2 nghiệm phân biệt khác 1

Do đó có 3 giá trị nguyên của m thỏa mãn ycbt.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2018 lúc 6:47

Chọn đáp án A

Phương pháp

Nhẩm nghiệm của phương trình hoành độ giao điểm, từ đó tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.

Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình x 2 + ( m + 3 ) x + m 2 = 0 phải có hai nghiệm phân biệt khác 1

Do đó với -1<m<3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2018 lúc 15:03


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2018 lúc 7:28

Hàm số g(x) nghịch biến trên khoảng (0;1) khi 

Dựa vào đồ thị, ta có 

Theo YCBT 

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2017 lúc 11:24

Chọn đáp án C.

AllesKlar
Xem chi tiết
Hoàng Tử Hà
12 tháng 4 2022 lúc 23:57

undefined 9 đko nhỉ

Nguyễn Việt Lâm
13 tháng 4 2022 lúc 13:18

Đặt \(h\left(x\right)=f^2\left(x\right)-2f\left(x\right)-m\Rightarrow h'\left(x\right)=2f'\left(x\right)\left[f\left(x\right)-1\right]\)

\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f\left(x\right)=1\end{matrix}\right.\)

Từ đồ thị ta thấy \(f'\left(x\right)=0\) có 2 nghiệm (do \(f\left(x\right)\) có 2 cực trị) và \(y=1\) cắt \(y=f\left(x\right)\) tại 3 điểm

\(\Rightarrow h'\left(x\right)=0\) có 5 nghiệm

\(\Rightarrow\) Hàm \(g\left(x\right)\) có 9 cực trị khi \(f^2\left(x\right)-2f\left(x\right)-m=0\) có 4 nghiệm không trùng với nghiệm của \(h'\left(x\right)=0\)

TH1: \(m=0\Rightarrow f^2\left(x\right)-2f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}f\left(x\right)=0\\f\left(x\right)=2\end{matrix}\right.\)

\(f\left(x\right)=0\) có 2 nghiệm, trong đó 1 nghiệm trùng với \(f'\left(x\right)=0\) nên chỉ tính 1 nghiệm, \(f\left(x\right)=2\) có 3 nghiệm \(\Rightarrow f^2\left(x\right)-2f\left(x\right)=0\) có 4 nghiệm ko trùng \(h'\left(x\right)=0\) (thỏa mãn)

TH2: \(m>0\), đặt \(k=f\left(x\right)\Rightarrow k^2-2k-m=0\) (1) luôn có 2 nghiệm pb trái dấu \(k_1< 0< k_2\) do \(c=-m< 0\)

Từ đồ thị ta thấy \(f\left(x\right)=k_1\) luôn có đúng 1 nghiệm

Do đó, \(f\left(x\right)=k_2\) phải có 3 nghiệm phân biệt đồng thời \(k_2\ne1\) \(\Rightarrow\left\{{}\begin{matrix}0< k_2< 4\\k_2\ne1\end{matrix}\right.\)

(\(k_2\) là nghiệm dương của (1) nên \(k_2=1+\sqrt{m+1}\))

\(\Rightarrow\left\{{}\begin{matrix}0< 1+\sqrt{m+1}< 4\\1+\sqrt{m+1}\ne1\end{matrix}\right.\) \(\Rightarrow m< 8\Rightarrow m=\left\{1;2;3;4;5;6;7\right\}\)

Kết hợp lại ta được \(m=\left\{0;1;...;7\right\}\) có 8 giá trị nguyên của m thỏa mãn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 12 2017 lúc 7:14

Nên y = 0 là tiệm ngang của đồ thị hàm số.

Vậy để đồ thị hàm số có 4 đường tiệm cận thì đồ thị hàm số phải có 3 đường tiệm cận đứng.

Hay phương trình

Để phương trình (1) có ba nghiệm phân biệt khác 3 thì m khác 3 và phương trình (*) có hai nghiệm phân biệt khác m và khác 3.

Do đó

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 5 2018 lúc 5:38

Đồ thị hàm số đã cho có 2 đường tiệm cận đứng ⇔  phương trình g(x) có 2 nghiệm phân biệt