2003 x 2004 + 2005 x15 + 1989
2004 x 2005 - 2004 x 2002
(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
I, Tìm x: a, \(\dfrac{x-2004}{2003}+\dfrac{x-2003}{2005}+\dfrac{x-2005}{2004}=3+\dfrac{2005}{2004}+\dfrac{2004}{2005}\)
Tìm x biết Ax + B = C
A = 158 x 12 - 12/7 - 12/289 -12/85 // 4 - 4/7 - 4/289 - 4/85 : 1/6 x 505505505 / 711711711 - 2005
B = 2003 x [2004 ^2003 + 2004^2002 + ..... + 2004 + 1] - 2004^2004 - 5
C= 2003 x 1986 + 2002 x 17 + 2020 / 2003 x 2004 - 2003 ^2
jup mik nhe
Tìm x: a, \(\frac{x-2004}{2003}+\frac{x-2003}{2004}+\frac{x-2005}{2004}=3+\frac{2005}{2003}\)\(+\frac{2004}{2005}\)
c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15)
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3
Giải phương trình sau :
\(\frac{x^2-2008}{2007}+\:\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\:\frac{x^2-\:2005}{2004}+\:\frac{x^2-2004}{2003}+\:\frac{x^2-2003}{2002}\)
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
Giải hộ mình bất phương trình này.
\(\dfrac{x+1987}{2002}+\dfrac{x+1988}{2003}>\dfrac{x+1989}{2004}+\dfrac{x+1990}{2005}\)
BPT \(\Leftrightarrow\dfrac{x+1987}{2002}+\dfrac{x+1988}{2003}-\dfrac{x+1989}{2004}+\dfrac{x+1990}{2005}>0\)
\(\Leftrightarrow\left(\dfrac{x+1987}{2002}-1\right)+\left(\dfrac{x+1988}{2003}-1\right)-\left(\dfrac{x+1989}{2004}-1\right)-\left(\dfrac{x+1990}{2005}-1\right)>0\)
\(\Leftrightarrow\dfrac{x-15}{2002}+\dfrac{x-15}{2003}-\dfrac{x-15}{2004}-\dfrac{x-15}{2005}>0\)
\(\Leftrightarrow\left(x-15\right)\left(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}\right)>0\)
Vì \(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}>0\)
\(\Rightarrow x-15>0\)
\(\Leftrightarrow x>15\)
Vậy bpt có nghiệm x > 15
\(\dfrac{x+1987}{2002}+\dfrac{x+1988}{2003}-2>\dfrac{x+1989}{2004}+\dfrac{x+1990}{2005}-2\)
\(\Leftrightarrow\left(\dfrac{x+1987}{2002}-1\right)+\left(\dfrac{x+1988}{2003}-1\right)\)
\(-\left(\dfrac{x+1989}{2004}-1\right)-\left(\dfrac{x+1990}{2005}-1\right)\)
quy đồng lên ta được:
\(\left(\dfrac{x+1987-2002}{2002}\right)+\left(\dfrac{x-1998-2003}{2003}\right)\)
\(-\left(\dfrac{x+1989-2004}{2004}\right)-\left(\dfrac{x+1990-2005}{2005}\right)>0\)
\(\Leftrightarrow\left(\dfrac{x-15}{2002}\right)+\left(\dfrac{x-15}{2003}\right)-\left(\dfrac{x-15}{2004}\right)-\left(\dfrac{x-15}{2005}\right)>0\)
đặt nhân tử chung ta được:
\(\Leftrightarrow\left(x-15\right)\left(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}\right)>0\)
Vì:
\(\left(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}\in Z\right)\) nên ta xét \(x-15>0\Rightarrow x>15\)
Kí hiệu bất phương trình là (*). Ta có:
(*) \(\Leftrightarrow\left(\dfrac{x+1987}{2002}-1\right)+\left(\dfrac{x+1988}{2003}-1\right)>\left(\dfrac{x+1989}{2004}-1\right)+\left(\dfrac{x+1990}{2005}-1\right)\\ \Leftrightarrow\dfrac{x-15}{2002}+\dfrac{x-15}{2003}-\dfrac{x-15}{2004}-\dfrac{x-15}{2005}>0\\ \Leftrightarrow\left(x+15\right)\left(\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}\right)\)
Ta có:
\(\dfrac{1}{2002}>\dfrac{1}{2004}\Rightarrow\dfrac{1}{2002}-\dfrac{1}{2004}>0\\ \dfrac{1}{2003}>\dfrac{1}{2005}>\dfrac{1}{2003}-\dfrac{1}{2005}>0\\ \Rightarrow\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}>0\)
\(\Rightarrow\)(*) \(\Leftrightarrow x-15>0\Leftrightarrow x>15\)
Tập nghiệm \(S=\left\{x|x>15\right\}\)
So sánh A và B biết:
A = 2003 x 2004 - 1/2003 x 2004
B = 2004 x 2005 - 1/2004 x 2005
Cho x = 2005. Tính giá trị của biểu thức : x^2005 - 2006x^2004 + 2006x^2003 - 2006x^2002+ ... -2006x^2 2006x- 1
Với x = 2005 ta có
\(x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1\)
\(=\left(x^{2005}-2005x^{2004}\right)-\left(x^{2004}-2005^{2003}\right)+\left(x^{2003}-2005x^{2002}\right)-...-\left(x^2-2005x\right)+\left(x-2005\right)+2006\)
\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-...-x+1\right)+2006=2006\).
Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)