Tam giác ABC vuông tại B có AC = 10 và . Độ dài cạnh AB, BC là
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Cho tam giác ABC vuông tại A, có AB=18cm, AC=24cm
1.Tính độ dài cạnh BC
2.Gọi I là trung điểm của BC. Đường vuông góc với cạnh BC tại I cắt AC tại E. Chứng minh rằng
a) Hai tam giác ABC và IEC đồng dạng
b) Tính độ dài các cạnh của tam giác IEC
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
Cho tam giác ABC vuông tại A, có AB=18cm, AC=24cm
1.Tính độ dài cạnh BC
2.Gọi I là trung điểm của BC. Đường vuông góc với cạnh BC tại I cắt AC tại E. Chứng minh rằng
a) Hai tam giác ABC và IEC đồng dạng
b) Tính độ dài các cạnh của tam giác IEC
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b) Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm.
Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.
a) Tính độ dài BC.
b) Tính diện tích tam giác ABC, biết chiều cao AH là 15cm.
Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc vuông thứ hai bằng 5/8 cạnh góc vuông thứ nhất. Tính diện tích tam giác vuông đó.
Bài 4: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 90cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b)Tính diện tích tam giác vuông ABC, biết cạnh AC bằng 4/5 cạnh AB.
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
Bài 9: Tam giác ABC vuông tại A, chu vi là 120cm. Biết độ dài cạnh AC bằng 75% độ dài cạnh
AB, độ dài cạnh BC bằng \(\dfrac{5}{7}\) tổng độ dài hai cạnh AB và AC.
Tính chiều cao AH ứng với cạnh BC của tam giác ABC.
Bài 10*: Tam giác ABC vuông ở A. Biết AB = 40cm, AC = 30cm và BC = 50cm.
a/ Tính chiều cao AH.
b/ Biết tỉ số , tính diện tích \(\dfrac{BH}{HC}=\dfrac{9}{16}\) tam giác ACH.
Bài 11: Cho tam giác ABC. Với một đường thẳng hãy chia tam giác ABC thành hai hình, sao
cho:
a) Diện tích hình này gấp hai lần diện tích hình kia?
b) Diện tích hình này gấp 8 lần diện tích hình kia.
Bài 10. Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: ABD = EBD.
b) Chứng minh: ABE là tam giác đều.
c) Tính độ dài cạnh BC.
Bổ sung đề: \(\widehat{ABC}=60^0\)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔABE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)
nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)
c) Xét ΔABC vuông tại A có
\(\cos\widehat{B}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)
Vậy: BC=10cm
tam giác ABC vuông tại A có chu vi 120 cm.Độ dài AC lớn hơn độ dài AB 10 cm. Cạnh BC dài 50 cm. Tính: a) Độ dài cạnh AB, AC b) Diện tích tam giác c) Độ dài đường cao AH
a) Nửa chu vi tam giác là :
\(120\div2=60\left(cm\right)\)
Độ dài đáy AC là :
\(\left(60+10\right)\div2=35\left(cm\right)\)
Độ dài đáy AB là :
\(60-35=25\left(m\right)\)
b) Chiều cao AH là :
\(60-50=10\left(m\right)\)
c) Diện tích tam giác là :
a) Tổng độ dài AC, AB là:
\(120-50=70\left(cm\right).\)
Độ dài AC là: \(\dfrac{\left(70+10\right):2}{2}=40\left(cm\right).\)
Độ dài AB là: \(70-40=30\left(cm\right)\)
b) Diện tích tam giác ABC là: \(\dfrac{1}{2}\times AB\times AC=\dfrac{1}{2}\times30\times40=600\left(cm^2\right).\)
c) Độ dài đường cao AH là: \(600:\dfrac{1}{2}:BC=600:\dfrac{1}{2}:50=24\left(cm\right).\)
nãy tôi thử ae thôi :>
Theo bài ra ta có : AB + AC + BC = 120
<=> AB + AC = 70 (1)
Lại có : AC - AB = 10 (2)
Từ (1) ; (2) suy ra :
\(\left\{{}\begin{matrix}AB+AC=70\\-AB+AC=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2AC=80\\AB=AC-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=40\\AB=30\end{matrix}\right.\)
b, Diện tích tam giác là : \(S=\dfrac{1}{2}.AC.AB=\dfrac{1}{2}.40.30=600cm^2\)
c, Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức :
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{1200}{50}=\dfrac{120}{5}=24cm\)
Cho tam giác ABC vuông tại B và có AB = 6cm, BC = 8cm. Độ dài cạnh AC là:
A. 2 cm.
B. 4 cm.
C. 10 cm.
D. 2 7 cm.
Cho tam giác ABC vuông tại A có AB lớn hơn AC So sánh góc B và góc C Tính độ dài cạnh AB biết BC = 10 cm AC = 6 cm trên cạnh BC lấy điểm D sao cho BD = AB đường thẳng vuông góc với BC tại D cắt AC ở E Chứng minh rằng tam giác ABE =tam giác DBE và AE
a: AB=8cm
b: xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
BA=BD
Do đó: ΔABE=ΔDBE