Cho số thực x thỏa mãn 0 < x < 1. Tìm GTNN của hàm số:
y = 1 x + 1 1 - x
cho hai số thực x,y thỏa mãn điều kiện 0<x<=1; 0<y<=1 và x+y=4xy. Tìm GTLN, GTNN của biểu thức P=x^2+y^2-xy
\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)
\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)
\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)
dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)
vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)
Cho 2 số thực x,y thỏa mãn: 0<x,y<=1 và x+y=3xy. Tìm GTNN và GTLN của P=x2+y2-4xy
Mọi người giúp mình nhé!Cho x, y là các số thực dương thỏa mãn x + \(\dfrac{1}{y}\) = 1. Tìm GTNN của P = \(\dfrac{x}{y}+\dfrac{y}{x}\)
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Cho x, y là các số thực ko âm thỏa mãn x+y=1. Tìm GTNN của biểu thức
\(P=\dfrac{x}{y+1}+\dfrac{y}{x+1}\)
Nếu tồn tại 1 số bằng 0 \(\Rightarrow P=1\)
Nếu x;y đều dương:
\(P=\dfrac{x^2}{xy+x}+\dfrac{y^2}{xy+y}\ge\dfrac{\left(x+y\right)^2}{2xy+x+y}\ge\dfrac{\left(x+y\right)^2}{\dfrac{1}{2}\left(x+y\right)^2+x+y}=\dfrac{2}{3}\)
\(P_{min}=\dfrac{2}{3}\) khi \(x=y=\dfrac{1}{2}\)
Bài này có thể tìm được cả max:
\(\left\{{}\begin{matrix}y+1\ge1\Rightarrow\dfrac{x}{y+1}\le x\\x+1\ge1\Rightarrow\dfrac{y}{x+1}\le y\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{x}{y+1}+\dfrac{y}{x+1}\le x+y=1\)
\(P_{max}=1\) khi \(\left(x;y\right)=\left(0;1\right)\) và hoán vị
Cho các số thực dương thỏa mãn x + y=1 .Tìm GTNN của B = \(\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}\)
\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)
\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)
\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị
Lời giải:
Áp dụng BĐT Cauchy-Shwarz:
$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$
$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$
$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$
Vậy $B_{\min}=(1+\sqrt{3})^2$
Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$
Cho hai số thực x,y thỏa mãn \(x+y\le1\). Tìm GTNN của
\(M=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\)
Lời giải:
Áp dụng BĐT AM-GM:
$M\geq 2\sqrt{\frac{1}{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\frac{x^2y^2+1}{xy}}$
$=2\sqrt{xy+\frac{1}{xy}}$
Áp dụng BĐT AM-GM tiếp:
$1\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$xy+\frac{1}{xy}=(xy+\frac{1}{16xy})+\frac{15}{16xy}$
$\geq 2\sqrt{xy.\frac{1}{16xy}}+\frac{15}{16xy}$
$\geq 2\sqrt{\frac{1}{16}}+\frac{15}{16.\frac{1}{4}}=\frac{17}{4}$
$\Rightarrow M\geq 2\sqrt{\frac{17}{4}}=\sqrt{17}$
Vậy $M_{\min}=\sqrt{17}$. Giá trị này đạt tại $x=y=\frac{1}{2}$
cho số thực dương x;y thỏa mãn x+2y=6 .tìm GTNN của P=\(\dfrac{8}{x}+\dfrac{1}{y}\)
\(x+2y=6\)
\(\Leftrightarrow\dfrac{6}{2}=\dfrac{x}{2}+y\)
\(P+\dfrac{6}{2}=\dfrac{8}{x}+\dfrac{1}{y}+\dfrac{x}{2}+y\)
\(\Leftrightarrow P+\dfrac{6}{2}=\left(\dfrac{8}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{y}+y\right)\)
vì x;y là số thực dương ,áp dụng BĐT Côsi ta có :
\(\dfrac{8}{x}+\dfrac{x}{2}=2\sqrt{\dfrac{8}{x}+\dfrac{x}{2}}=2\sqrt{4}=2.2=4\)
\(\dfrac{1}{y}+y=2\sqrt{\dfrac{1}{y}+y}=2\sqrt{1}=2.1=2\)
nên \(P+\dfrac{6}{2}\ge6\)
\(\Leftrightarrow P\ge6-\dfrac{6}{2}\)
\(\Leftrightarrow P\ge3\)
vậy \(P_{min}=3\)