Cho hình chóp S.ABC có SBC và ABC đều là tam giác đều cạnh a. Cho SA = a 3 2 Khoảng cách từ S đến mặt phẳng (ABC) bằng:
A. a 3 3
B. a
C. 3 a 4
D. a 3 2
Cho hình chóp S.ABC có SBC và ABC đều là tam giác đều cạnh a. Cho S A = a 3 2 . Khoảng cách từ S đến mặt phẳng A B C bằng:
A. a 3 3
B. a
C. 3 a 4
D. a 3 2
Đáp án C
Gọi I là trung điểm BC. Ta chứng minh được hai mặt phẳng
Cho hình chóp S.ABC, đáy ABC là tam giác đều cạnh a, \(SA\perp\left(ABC\right)\) và \(SA=\dfrac{a\sqrt{3}}{2}\). Tính góc giữa hai mặt phẳng (SBC) và (ABC)
Ta có : \(\left(SBC\right)\cap\left(ABC\right)=BC\)
Lấy H là TĐ của BC \(\Rightarrow AH\perp BC\)
SA \(\perp\left(ABC\right)\Rightarrow SA\perp AB;AC\)
\(\Delta SAB;\Delta SAC\perp\) tại A có : \(SB=\sqrt{SA^2+AB^2}=\sqrt{SA^2+AC^2}=SC\)
\(\Rightarrow\Delta SBC\) cân tại S . Suy ra : \(SH\perp BC\)
Suy ra : \(\left(\left(SBC\right);\left(ABC\right)\right)=\left(HA;HS\right)=\widehat{SHA}\)
Tính được : AH = \(\dfrac{a\sqrt{3}}{2}\)
\(\Delta SAH\) vuông tại A có : \(tan\widehat{SHA}=\dfrac{SA}{HA}=\dfrac{a\sqrt{3}}{2}:\dfrac{a\sqrt{3}}{2}=1\Rightarrow\widehat{SHA}=45^o\)
Vậy ...
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a , SA ⊥ (ABC), góc giữa hai mặt phẳng (SBC) và (ABC) bằng 300 . Độ dài cạnh SA bằng
A. a 3
B. 3 a 2
C. a 2
D. a 3
Phương pháp
- Xác định góc giữa hai mặt phẳng (góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng mà cùng vuông góc với giao tuyến).
- Tính toán, sử dụng tính chất của tam giác vuông, tam giác đều.
Cách giải:
Gọi M là trung điểm của BC .
Tam giác ABC đều nên AM ⊥ BC . Mà
SA ⊥ (ABC) => SA ⊥ BC .
=> BC ⊥ (SAM) => BC ⊥ SM .
Ta có:
nên góc giữa hai mặt phẳng (SBC) và (ABC) là
Tam giác ABC đều cạnh a nên
Tam giác SAM vuông tại A nên
Chọn C.
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a , SA ⊥ (ABC), góc giữa hai mặt phẳng (SBC) và (ABC) bằng 30 ° . Độ dài cạnh SA bằng
A. a 3
B. 3 a 2
C. a 2
D. a 3
Đáp án C
Phương pháp
- Xác định góc giữa hai mặt phẳng (góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng mà cùng vuông góc với giao tuyến).
Tính toán, sử dụng tính chất của tam giác vuông, tam giác đều
Cho hình chóp S.ABC có SA ⊥ ABC , SA = a 2 và tam giác ABC đều cạnh a. Tính khoảng cách từ A đến mặt phẳng (SBC).
A. a 66 11
B. a 11 2
C. a 3 4
D. a 3 2
Cho hình chóp S . A B C có S A ⊥ A B C , ∆ A B C là tam giác đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng S B C .
A. h = a 3 7
B. h = a 3 2
C. h = 2 a 7
D. h = a 3 7
Cho hình chóp S . A B C có S A ⊥ A B C , ∆ A B C là tam giác đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng S B C .
A. h = a 3 7 .
B. h = a 3 2 .
C. h = 2 a 7 .
D. h = a 3 7 .
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA vuông góc với mặt đáy (ABC) và S A = a 3 Khoảng cách từ A đến mp (SBC) bằng
A. a 15 5
B. a
C. a 5 5
D. a 3 2
Gọi M là trung điểm BC, suy ra
Gọi K là hình chiếu của A trên SM suy ra A K ⊥ S M
Từ (1) và (2) suy ra
Trong ∆ SAM, có
Vậy
Chọn A.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC) và SA = a/2.
M là trung điểm của BC. Khi đó góc giữa hai mặt phẳng (SAM) và (SBC) bằng:
A. 0 o
B. 30 o
C. 45 o
D. 60 o
tam giác ABC đều nên AM ⊥ BC ⇒ SM ⊥ BC (theo định lí ba đường vuông góc)
Đáp án B