Nghiệm của phương trình tan3x = tanx là
Nghiệm của phương trình tan3x=tanx là
A. x = k π / 2 , ( k ∈ Z )
B. x = k π , ( k ∈ Z )
C. x = k 2 π , ( k ∈ Z )
D. x = k π / 6 , ( k ∈ Z )
Số vị trí biểu diễn các nghiệm của phương trình tan3x=tanx trên đường tròn lượng giác là????
`tan3x=tanx`
`<=>3x=x+kπ`
`<=>x=k π/2`
Phương trình có `4` điểm biểu diễn các nghiệm: `π/2 ; π ; (3π)/2 ; 2π`.
Tính tổng các nghiệm trong đoạn 0 ; 30 của phương trình tan x = tan 3 x (1)
A. 55 π
B. 171 π 2
C. 45 π
D. 190 π 2
Phương trình tan3x=tanx có bao nhiêu nghiệm thuộc khoảng 0 ; 2018 π ?
A. 2018
B. 4036
C. 2017
D. 4034
Phương trình tan 3 x = tan x có bao nhiêu nghiệm thuộc khoảng 0 ; 2018 π ?
A. 2018
B. 4036
C. 2017
D. 4034
Đáp án C.
Điều kiện cos 3 x ≢ 0 cos x ≢ 0 ⇔ 3 x ≢ π 2 + k π x ≢ π 2 + k π ⇔ x ≢ π 6 + k π 3 x ≢ π 2 + k π
⇔ x ≢ π 6 + k π 3 , k ∈ ℤ .
Phương trình tan 3 x = tan x ⇔ sin 3 x cos 3 x = sin x cos x ⇔ sin 3 x . cos x - cos 3 x . sin x = 0
⇔ sin 2 x = 0 ⇔ 2 x = k π ⇔ x = k π 2 , k ∈ ℤ . Do x ≢ π 6 + k π 3 nên x = k π , k ∈ ℤ .
Nếu x ∈ 0 ; 2018 π thì 0 < k π < 2018 π ⇔ 0 < k < 2018
→ k ∈ ℤ k ∈ 1 ; 2 ; . . . . ; 2017 . . Vậy có 2017 - 1 + 1 = 2017 giá trị k nguyên thỏa mãn nên phương trình có 2017 nghiệm.
Giải phương trình:
\(Tan3x=Tanx\)
ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\)
\(tan3x=tanx\)
\(\Leftrightarrow3x=x+k\pi\)
\(\Leftrightarrow x=\dfrac{k\pi}{2}\)
Đối chiếu điều kiện ta được \(x=k\pi\) là nghiệm của phương trình.
Giải phương trình: tan3x - tanx = 2
Lời giải:
$\tan 3x-\tan x=2$
$\Leftrightarrow \frac{3\tan x-\tan ^3x}{1-3\tan ^2x}-\tan x=2$
Đặt $\tan x=a$ thì:
$\frac{3a-a^3}{1-3a^2}-a=2$
$\Leftrightarrow a^3+3a^2+a-1=0$
$\Leftrihgtarrow a^2(a+1)+2a(a+1)-(a+1)=0$
$\Leftrightarrow (a+1)(a^2+2a-1)=0$
$\Leftrightarrow a=-1$ hoặc $a=-1\pm \sqrt{2}$
Đến đây thì đơn giản rồi.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{3}\end{matrix}\right.\)
\(\dfrac{sin3x}{cos3x}-\dfrac{sinx}{cosx}=2\)
\(\Rightarrow sin3x.cosx-cos3x.sinx=2cos3x.cosx\)
\(\Leftrightarrow sin2x=cos4x-cos2x\)
\(\Leftrightarrow cos^22x-sin^22x-sin2x-cos2x=0\)
\(\Leftrightarrow\left(sin2x+cos2x\right)\left(cos2x-sin2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=0\\cos\left(2x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình: tanx + tan2x - tan3x = 0
Giải theo công thức tan(x+2x)=(tanx+tan2x)/(1-tanx.tan2x) có vẻ nhanh hơn đó.
Nhưng nhớ phải đặt điều kiện cho 3 cái cos dưới mẫu khác 0 (đk riêng của pt lượng giác)
Giải phương trình : sin5x-sin3x=0
Họ nghiệm của phương trình tan(x+\(\frac{\pi}{5}\))+ \(\sqrt{3}\)= 0 là?
Phương trình tanx= tanx/2 có họ nghiệm là?
Nghiệm của phương trình √3 + 3tanx =0 có nghiệm là?
Phương trình √3 + tanx = 0 có nghiệm là?
Họ nghiệm của phương trình tan2x - tanx = 0 là?
Phương trình lượng giác 3cotx - √3 = 0 có nghiệm là?
Pt lượng giác 2cotx - √3 = 0 có nghiệm là?