Tính bán kính R mặt cầu ngoại tiếp tứ diện đều ABCD cạnh a 2
Tính bán kính R mặt cầu ngoại tiếp tứ diện đều ABCD cạnh a 2
A. R = a 3
B. R = a 3 2
C. R = 3 a 2
D. R = 3 a 2 2
Đáp án B
Gọi G là trọng tâm Δ B C D , ta có A G ⊥ B C D nên AG là trục của Δ B C D ,
Gọi M là trung điểm của AB. Qua M dựng đường thẳng Δ ⊥ A B , gọi I = Δ ∩ A G
Do đó mặt cầu ngoại tiếp tứ diện ABCD có tâm là I và bán kính R = I A
Ta có Δ A M I , Δ A G B là hai tam giác vuông đồng dạng nên I A A B = A M A G ⇒ A I = A B . A M A G
Do A B = a 2 , A M = a 2 2 , A G = a 2 2 − 2 3 . a 2 . 3 2 2 = 2 a 3 3
Khi đó R = A I = a 2 . a 2 2 2 a 3 3 = a 3 2
Cách 2: Áp sụng công thức giải nhanh R = A B 2 2 S G = a 3 2
II. Tự luận ( 4 điểm)
Tính bán kính của mặt cầu ngoại tiếp hình tứ diện ABCD đều cạnh a.
Gọi I là trung điểm cạnh BC, G là trọng tâm của tam giác ABC.
và DG là trục của tam giác ABC.
Trong mp (DAG), kẻ trung trực của DA cắt DG tại O thì: OD = OA = OB = OC nên O chính là tâm mặt cầu ngoại tiếp tứ diện ABCD.
Bán kính R của mặt cầu bằng độ dài đoạn OD.
Trong tam giác ADG vuông tại G, ta có:
Mặt khác, tam giác DJO đồng dạng tam giác DGA nên:
Vậy bán kính của mặt cầu ngoại tiếp hình tứ diện ABCD đều cạnh a là R = a 6 4
Gọi r , R lần lượt là bán kính mặt cầu nội tiếp và ngoại tiếp tứ diện đều ABCD. Tính tỉ số R r ?
Tứ diện ABCD là tứ diện đều nội tiếp trong mặt cầu bán kính R. Tính độ dài của cạnh tứ diện đều theo R
A. R 2
B. R 3
C. 2 R 2 3
D. R 6 2
Đáp án C
Đặt AB = x, M, N lần lượt là trung điểm AB, CD, I là trung điểm MN thì I là tâm mặt cầu, có
Cho tứ diện ABCD có DA vuông góc với (ABC) và AD = a, AC = 2a; cạnh BC vuông góc với cạnh AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện ABCD.
A. r = a 5
B. r = a 3 2
C. r = a
D. r = a 5 2
Đáp án D
Phương pháp:
+) Xác định tâm mặt cầu ngoại tiếp khối tứ diện là điểm cách đều tất cả các đỉnh của tứ diện.
+) Áp dụng định lí Pytago tính bán kính mặt cầu ngoại tiếp tứ diện.
Cách giải:
Tam giác ABC vuông tại B, M là trung điểm của AC ⇒ M là tâm đường tròn ngoại tiếp tam giác ABC
Gọi I là trung điểm của CD ⇒ IC = ID(1)
Ta có: IM là đường trung bình của tam giác ACD ⇒ IM // AD
Mà AD ⊥ (ABC) ⇒ IM ⊥ (ABC)
Do đó, IM là trục đường tròn ngoại tiếp tam giác ABC
⇒ IA = IB = IC(2)
Từ (1), (2) ⇒ IA = IB = IC = ID ⇒ I là tâm mặt cầu ngoại tiếp tứ diện ABCD, bán kính mặt cầu:
Cho tứ diện ABCD có AB = 4a, CD = 6a, các cạnh còn lại đều bằng a 22 . Tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD.
A. 5 a 2
B. 3a
C. a 85 3
D. a 79 3
Cho tứ diện ABCD có AB =4a, CD= 6a, các cạnh còn lại đều bằng a 22 .Tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD.
A. 5 a 2
B. 3a
C. a 85 3
D. a 79 3
Đáp án C.
Gọi M, N lần lượt là trung điểm của AB và CD
Cho tứ diện ABCD có DA vuông góc với mặt phẳng (ABC) và AD = a, AC = 2a. cạnh BC vuông góc với AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện ABCD.
A. r = a 5
B. r = a 3 2
C. r = a
D. r = a 5 2
Cho tứ diện A B C D có DA vuông góc với mặt phẳng ( A B C ) và A D = a , A C = 2 a , cạnh BC vuông góc với AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện A B C D .