Cho tứ diện ABCD có AB=2; CD=4 và các cạnh còn lại cùng bằng 6. Tính diện tích mặt cầu ngoại tiếp tứ diện S.ABCD.
A. 1156 π 31
B. 1156 π 93
C. 47 π
D. 1280 π 93
Cho tứ diện ABCD có tam giác BCD vuông tại B, AC vuông góc với mặt phẳng (BCD), A C = 5 a , B C = 3 a , B D = 4 a . Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD
A. R = 5 a 3 2
B. R = 5 a 2 3
C. R = 5 a 3 3
D. R = 5 a 2 2
Cho tứ diện ABCD có DA vuông góc với mặt phẳng (ABC) và AD = a, AC = 2a. cạnh BC vuông góc với AB. Tính bán kính r của mặt cầu ngoại tiếp tứ diện ABCD.
A. r = a 5
B. r = a 3 2
C. r = a
D. r = a 5 2
Cho tứ diện ABCD có BC=a, C D = a 3 , B C D ^ = A B C ^ = A D C ^ = 90 ° . Góc giữa hai đường thẳng AD và BC bằng 60 ° . Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD.
A. a 3 2
B. a 3
C. a
D. a 7 2
Cho tứ diện đều ABCD có cạnh a. Một mặt cầu tiếp xúc với các mặt của tứ diện có bán kính là:
A. a 6 12
B. a 6 6
C. a 6 3
D. a 6 8
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có các cạnh A B = a , A D = 2 a , A A ' = 3 a . Tìm bán kính của mặt cầu ngoại tiếp tứ diện CB′C′D′.
A. 3 a 2 .
B. 14 a 2 .
C. 3 a
D. 7 a 2 .
Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD.
A. 2 2
B. 2
C. 2 3 3
D. 6 3
Cho tứ diện ABCD có C D = a 2 , Δ A B C là tam giác đều cạnh a, Δ A C D vuông tại A. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng
A . 4 π a 3 3 .
B . π a 3 6 .
C . 4 π a 3 .
D . π a 3 3 2 .
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (BCD) vuông góc với nhai. Biết tam giác ABC đêì cạnh a, tam giá BCD vuông cân tại D. Bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng
A . a 2 3
B . a 3 3
C . 2 a 3 3
D . a 3 2