Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tứ diện ABCD có C D = a 2 , Δ A B C là tam giác đều cạnh a, Δ A C D  vuông tại A. Mặt phẳng  (BCD) vuông góc với mặt phẳng  (ABD). Thể tích của khối cầu ngoại tiếp tứ diện ABCD bằng

A .   4 π a 3 3 .

B .   π a 3 6 .

C .   4 π a 3 .

D .   π a 3 3 2 .

Cao Minh Tâm
13 tháng 7 2019 lúc 18:31

Chọn A

Coi như a =1. Tam giác ACD vuông tại A nên A D = C D 2 - A C 2 = 1 = A B ⇒ Δ A B D  cân tại A và tam giác ACD vuông cân tại A. Gọi H, E lần lượt là trung điểm của BD và DC. Ta có A H ⊥ ( B C D )  và C D ⊥ A E . Hơn nữa C D ⊥ A H ⇒ C D ⊥ ( A H E ) ⇒ C D ⊥ H E  mà HE song song với BC suy ra BC vuông góc với CD. H là tâm của đường tròn ngoại tiếp tam giác BCD, do đó AH là trục đường tròn này. Trong tam giác AHE dựng đường thẳng qua E vuông góc AE và cắt AH tại điểm I. Do mặt phẳng (AHE) vuông góc với mặt phẳng (ACD) nên d cũng vuông góc với (ACD). Hơn nửa E là tâm của đường tròn ngoại tiếp tam giác ACD suy ra I là tâm của mặt cầu ngoại tiếp tứ diện ABCD.

Ta có A I . A H = A E 2 ⇒ A I = A E 2 A H . Ta có

A E = 1 2   C D = 2 2 , H K = 1 2   B C = 1 2 ⇒ A H = 1 2  

Vậy A I = A E 2 A H = 1 ⇒ R = 1 ⇒ V m c = 4 3 π


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết