tìm m để đồ thị hàm số y=mx +1 song song với đường thẳng y=x
1. Cho hai hàm số bậc nhất y=mx+3 và y=(2m+1)x – 1.
Để đồ thị của hai hàm số đã cho là hai đường thẳng song song với nhau thì m = …
2. Cho hàm số y = ax+3. Để đồ thị hàm số song song với đường thẳng y = -5x thì a = …
\(1,\Leftrightarrow m=2m+1\Leftrightarrow m=-1\\ 2,\Leftrightarrow a=-5\)
cho hàm số y=mx (1) (với m là tham số , m khác 0) a)Tìm m để đồ thị hàm số 1đi qua điểm M(-1;-1).Với m vừa tìm được ,vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy b)Tìm m để đồ thị hàm số (1) song song với đường thẳng (d):y+(m2-2)x+2m+3 c)Tìm m để khoảng cách từ gốc tọa độ O đến đồ thị hàm số (1) bằng 2/căn5
Tìm m để đồ thị hàm số y=mx+1 song song với đường thẳng d: y=m^2+m+1
Bài 4: Cho hàm số : y=mx + 1 (1), trong đó m là tham số
a) Tìm m để đồ thị hàm số (1) đi qua điểm A(1;4). Với giá trị m vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên R
b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d) : y=m\(^2\)x + m + 1
a: Thay x=1 và y=4 vào (1), ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
Thay m=3 vào y=mx+1, ta được:
\(y=3\cdot x+1=3x+1\)
Vì a=3>0
nên hàm số y=3x+1 đồng biến trên R
b: Để đồ thị hàm số (1) song song với (d) thì
\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)
=>m-1=0
=>m=1
Bài 4: Cho hàm số y = (1 - m)x + m - 2
a) Tìm điều kiện để hàm số trên là hàm số bậc nhất
c) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x - 3
d) Tìm m để đồ thị hàm số cắt đường thẳng y = -x + 1
e) Tìm m để đồ thị hàm số đi qua điểm A(2;1)
g) Tìm m để đồ thị hàm số tạo với trục Ox một góc nhọn, một góc tù
h) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
f) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)
=>\(m\ne1\)
c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì
\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)
=>\(m\ne2\)
e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:
2(1-m)+m-2=1
=>2-2m+m-2=1
=>-m=1
=>m=-1
g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0
=>m<1
Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0
=>m>1
h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:
0(1-m)+m-2=3
=>m-2=3
=>m=5
f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:
-2(1-m)+m-2=0
=>-2+2m+m-2=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
Bài 4: Cho hàm số y = (1 - m)x + m - 2
a) Tìm điều kiện để hàm số trên là hàm số bậc nhất
b) Tìm m để hàm số nghịch biến
c) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x - 3
d) Tìm m để đồ thị hàm số cắt đường thẳng y = -x + 1
e) Tìm m để đồ thị hàm số đi qua điểm A(2;1)
g) Tìm m để đồ thị hàm số tạo với trục Ox một góc nhọn, một góc tù
h) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
f) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
b: Để hàm số y=(1-m)x+m-2 nghịch biến trên R thì 1-m<0
=>m>1
cho hàm số y=mx+1 trong đó m là tham số
a, Tìm m để đồ thị hàm số đi qua điểm A (1; 4)
b, Tìm m để đồ thị hàm số song song với đường thẳng : y = m^2x + m+1
làm ơn giải chi tiết giúp mik vs ạ
a: Thay x=1 và y=4 vào y=mx+1, ta được:
\(m\cdot1+1=4\)
=>m+1=4
=>m=3
b: Để hai đường thẳng này song song với nhau thì
\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)
=>m=0
Cho hàm số \(y=mx+m-6\left(m\ne0\right)\left(1\right)\).
1) Xác định m biết đồ thị hàm số (1) đi qua điểm M(2; 3). Vẽ đồ thị hàm số (1) với m vừa tìm được.
2) Tìm m để đồ thị hàm số (1) song song với đường thẳng \(y=3x+2\)
3) Chứng minh rằng đồ thị hàm số (1) luôn đi qua một điểm cố định với mọi giá trị của tham số m
1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:
\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)
2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)
3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).
Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)
Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).
Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).