Số nghiệm nguyên dương của bất phương trình log 2 x - log x 6 + log 2 x ≤ 1 là
A. 0
B. 3
C. 2
D. 1
Có bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình dưới đây:
log (x - 40) + log (60 - x) < 2?
A. 20
B. 10
C. Vô số
D. 18
Đáp án D
Điều kiện 40 < x < 60
Vậy x cần tìm theo yêu cầu đề là các số nguyên dương chạy từ 41 đến 59; trừ giá trị 50. Có tất cả 18 giá trị thỏa mãn.
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tập nghiệm của bất phương trình log 2 x - 1 ≥ log x là
Tìm số nghiệm nguyên của bất phương trình log 5 2 ( 3 x - 2 ) log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Cho đồ thị của hàm số \(y = {\log _2}x\) và y = 2 như Hình 6.8. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {\log _2}x\) nằm phía trên đường thẳng y = 2 và từ đó suy ra tập nghiệm của bất phương trình \({\log _2}x > 2.\)
Khoảng giá trị của x mà đồ thị hàm số \(y=log_2x\) nằm phía trên đường thẳng y = 2 là \(\left(4;+\infty\right)\)
\(\Rightarrow\) Tập nghiệm của bất phương trình \(log_2x>2\) là \(\left(4;+\infty\right)\)
Tìm tập nghiệm của bất phương trình log ( x - 21 ) < 2 - log x
A. (-4; 25)
B. (0; 25)
C. (21; 25)
D. (25; +∞)
Số nghiệm nguyên của bất phương trình log ( 2 x 2 - 15 x + 37 ) ≤ 1 là
A. 4
B. 2
C. 1
D. 3
Tập nghiệm của bất phương trình log(x2 + 25) > log(10x) là
Tập nghiệm của bất phương trình
log ( x 2 - 4 ) > log ( 3 x ) là:
Biết rằng bất phương trình \(\text{log}_2\left(5^2+2\right)+2\text{log}_{\left(5x+2\right)}2>3\) có tập nghiệm \(S=\left(\text{log}_ab;+\infty\right)\) với a;b là các số nguyên dương < 6 và \(a\ne1\)
Tính: P = a + 2b
Chứng minh rằng : với mọi số tự nhiên n>1 thì \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\)\(\sqrt{n}\)