Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
D.Khánh Đỗ
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 13:01

Khối đa diện

nên \(V_{A'B'C'D'}=\dfrac{1}{27}V_{ABCD}=\dfrac{\sqrt{2}}{324}a^2\)

Ko đủ trình
Xem chi tiết
Kiệt Nguyễn
27 tháng 9 2020 lúc 18:23

Giả sử tứ giác ABCD có AD = a, AB = b, BC = c, CD = d không có hai cạnh nào bằng nhau. Ta có thể giả sử a < b < c < d.

Ta có a + b + c > BD + c > d.

Do đó a + b + c + d > 2d hay S > 2d (*)

Ta có: S\(⋮\)a => S = m.a (m\(\in\)N)   (1)

S\(⋮\)b => S = n.b (n\(\in\)N)               (2)

S\(⋮\)c => S = p.d (p\(\in\)N)               (3)

S\(⋮\)d => S = q.d (q\(\in\)N)              (4)   . Từ (4) và (*) suy ra q.d > 2d => q > 2

Vì a < b < c < d (theo giả sử) nên từ (1), (2), (3) và (4) suy ra m > n > p > q > 2

Do đó q\(\ge\)3; p\(\ge\)4; n\(\ge\)5; m\(\ge\)6

Từ (1), (2), (3), (4) suy ra 1/m = a/S; 1/n = b/S; 1/p = c/S; 1/q = d/S

Ta có: \(\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\ge\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}=\frac{a+b+c+d}{S}=1\)

hay \(\frac{19}{20}\ge1\)(vô lí)

Vậy tồn tại hai cạnh của tứ giác bằng nhau (đpcm)

Khách vãng lai đã xóa
oOo_Duy Anh Nguyễn_oOo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2017 lúc 10:35

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2018 lúc 14:29

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2017 lúc 5:49

Đáp án là B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2020 lúc 9:09

Đáp án là B

Gọi K là trọng tâm tam giác ABC, N đỗi xứng với D qua J, qua K  kẻ KO song song với DN ta có O là tâm mặt cầu cần xác định.

Jenny phạm
Xem chi tiết