Cho hai số phức z1,z2 thỏa mãn z 1 - 2 - i = 2 2 v à z - 7 + i . Tìm GTNN của z 1 - i z 2
Giả sử z 1 , z 2 là hai trong số các số phức z thỏa mãn i z + 2 − i = 1 và z 1 − z 2 = 2. Giá trị lớn nhất của z 1 + z 2 bằng
A. 3
B. 2 3
C. 3 2
D. 4
Giả sử z 1 , z 2 là hai trong số các số phức z thỏa mãn i z + 2 - i = 1 và z 1 - z 2 = 2 . Giá trị lớn nhất của z 1 + z 2 bằng
Giả sử z 1 , z 2 là hai trong số các số phức z thỏa mãn i z + 2 - i = 1 và z 1 - z 2 = 2 . Giá trị lớn nhất của z 1 + z 2 bằng
A. 4
B. 2 3
C. 3 2
D. 3
Giả sử z 1 , z 2 là hai trong số các số phức z thỏa mãn |iz + 2 - i| = 1 và | z 1 - z 2 | = 2. Giá trị lớn nhất của | z 1 | + | z 2 | bằng
A. 3.
B. 2 3
C. 3 2
D. 4.
Đáp án D.
Ta có:
=> M(x;y) biểu diễn z thuộc đường tròn tâm I(1; 2 ) bán kính R = 1
Giả sử => AB = 2 = 2R nên B là đường kính của đường tròn (I;R)
Lại có: | z 1 | + | z 2 | = OA + OB
Mặt khác theo công thức trung tuyến ta có:
Theo BĐT Bunhiascopky ta có:
Giả sử z 1 , z 2 là hai trong số các số phức z thỏa mãn i z + 2 - i = 1 và z 1 - z 2 = 2 Giá trị lớn nhất của z 1 + z 2 bằng
A. 3
B. 2 3
C. 3 2
D. 4
Giả sử z 1 , z 2 là hai trong số các số phức z thỏa mãn i z + 2 − i = 1 và z 1 − z 2 = 2. Giá trị lớn nhất của z 1 + z 2 bằng
A. 3
B. 2 3 .
C. 3 2 .
D. 4
Đáp án D.
Ta có: i z + 2 − i = 1 ⇔ i x + y i + 2 − i = 1
(với z = x + y i x ; y ∈ ℝ )
⇔ x − 1 2 + y − 2 2 = 1 ⇒ M x ; y biểu diễn z
thuộc đường tròn tâm I 1 ; 2 bán kính R = 1.
Giả sử A z 1 ; B z 2 d o z 1 − z 2 = 2 ⇒ A B = 2 = 2 R
nên B là đường kính của đường tròn I ; R
Lại có: z 1 + z 2 = O A + O B
Mặt khác theo công thức trung tuyến ta có:
O I 2 = O A 2 + O B 2 2 − A B 2 4 ⇒ O A 2 + O B 2 = 8.
Theo BĐT Bunhiascopky ta có:
2 O A 2 + O B 2 ≥ O A + O B 2 ⇒ O A + O B ≤ 4.
Tìm số phức z thỏa mãn z ¯ . z 1 - z 2 = 0 với z 1 = - 1 - i , z 2 = 2 + i
Tìm số phức z thỏa mãn z ¯ . z 1 - z 2 = 0 với z 1 = - 1 - i , z 2 = 2 + i
A. z = -3 - i
B. z = - i + i
C. z = - 3 2 - i 2
D. z = - 3 2 + i 2
Cho hai số phức z 1 , z 2 thỏa mãn z 1 = 3 ; z 2 = 4 ; z 1 - z 2 = 37 . Tìm các số phức z = z 1 z 2
A. z = - 3 8 ± 3 3 8 i
B. z = 3 8 ± 3 3 8 i
C. z = - 3 4 ± 3 3 4 i
D. z = 3 4 ± 3 3 4 i
Đặt z 1 = x 1 + i y 1 ; z 2 = x 2 + i y 2 .
Từ giả thiết ta có
x 1 2 + y 1 2 = 9 x 2 2 + y 2 2 = 16 x 1 + x 2 2 + y 1 + y 2 2 = 37 ⇒ x 1 x 2 + y 1 y 2 = - 6 x 2 y 1 - x 1 y 2 2 = 108
Vậy z = - 3 8 ± 3 3 8 i
Đáp án A