Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2019 lúc 13:08


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2019 lúc 16:39

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2018 lúc 15:38

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 12 2018 lúc 10:10

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2018 lúc 3:37

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2019 lúc 8:25

Đáp án C

Ta có

Lại có

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 11:24

\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2019 lúc 8:54

Đáp án D

⇔ log   z - 1 log   z = 1 1 - log   x

⇔ 1 - log   x = log   z log   z - 1

⇔ log   x = - 1 log   z - 1 ⇔ x = 10 1 1 - log   z .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 3 2019 lúc 13:27

Chọn đáp án D.

Nguyễn Hồ Thúy Anh
Xem chi tiết
Châu Ngọc Bảo
5 tháng 5 2016 lúc 16:33

Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn

Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)

Xét đẳng thức thứ nhất ta có :

                                               \(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\)                                                               \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)

Biến đổi tương tự với đẳng thức thứ hai ta có :

                                             \(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)

Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)

Do đó ta cần có :

                    \(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng

Do đó ta được : \(x^yy^x=y^z.z^y\)

Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)

=> Điều phải chứng minh