Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyền Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 10:39

f(x)=x^3-2x^2+3x+1

g(x)=x^3+x^2-5x+3

a: f(-1/3)=-1/27-2/9-1+1=-1/27-6/27=-7/27

g(-2)=-8+4+10+3=17-8=9

b: f(x)-g(x)=x^3-2x^2+3x+1-x^3-x^2+5x-3

=x^2+8x-2

f(x)+g(x)

=x^3-2x^2+3x+1+x^3+x^2-5x+3

=2x^3-x^2-2x+4

Nguyễn Trọng Tấn
Xem chi tiết
Nguyễn Trọng Tấn
Xem chi tiết
Nguyễn Huệ Lam
1 tháng 9 2018 lúc 21:07

1) 

Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )

Ta có:

\(f\left(1\right)=a+b+c+d+e=0\)                                            (1)

\(f\left(2\right)=16a+8b+4c+2d+e=0\)                              (2)

\(f\left(3\right)=81a+27b+9c+3d+e=0\)                           (3)

\(f\left(4\right)=256a+64b+16c+4d+e=6\)                      (4)

\(f\left(5\right)=625a+125b+25c+5d+e=72\)                (5)

\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)

\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)

\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)

\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)

\(E=B-A=50a+12b+2c=0\)

\(F=C-B=110a+18b+2c=6\)

\(G=D-C=194a+24b+2c=66-6=60\)

Tiếp tục lấy H=F-E; K=G-F; M=H-K

Ta tìm được a

Thay vào tìm được b,c,d,e

ducchinhle
2 tháng 9 2018 lúc 8:15

1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e

có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n) 

thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7 

Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42

Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).

2. Thiếu dữ liệu 

3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)

...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)

để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5 

Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý 

Trần Quốc Anh
Xem chi tiết
Cường Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 9:28

a: f(x) chia hết cho x^2+x+1

=>\(x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1-ax+b+1⋮x^2+x+1\)

=>-a=0 và b+1=0

=>a=0 và b=-1

b: \(\dfrac{f\left(x\right)}{x^2-1}=\dfrac{x^3-x+ax^2-a+x+b+a}{x^2-1}\)

\(=x+a+\dfrac{x+b+a}{x^2-1}\)

Để f(x) chia x^2-1 dư x+3 thì x+b+a=x+3

=>b+a=3

anhmiing
Xem chi tiết
Trần Quân
17 tháng 11 2019 lúc 21:12

f(x)= (x-3). Q(x)+2 moi X 
f(x)=(x+4).H(x)+9 moi X 
=>f(3)= 2 
f( -4)= 9 
f(x)= (x^2+x-12).(x^2+3)+ ax +b 
=(x-3)(x+4). (x^2+3) +ax+b 
=>f(3)= 3a+b=2 
f(-4)=b -4a=9 
=>a= -1; b=5 
=> f(x)=(x^2+x-12)(x^2+3)-x+5 
= x^4+x^3-9x^2+2x-31

Khách vãng lai đã xóa
Thanh Tâm
21 tháng 11 2021 lúc 11:28

Ta thấy :

x+x -12 = x2 +4x - 3x-12

               = x(x+4) - 3(x+4)

               = (x-3)(x+4)

Vì :

f(x) chia (x-1)(x+4) được x2 + 3 và còn dư

Mà số dư có bậc không vượt quá 1

   => f(x) = (x-3)(x+4)(x2 + 3) +ax +b

Ta có :

f(x) chia (x-3) dư 2

   => f(3)=2

   => 3a+b=2

f(x) chia (x+4) dư 9

   => f(-4)=9

   => b-4a=9

=> 3a+b-b+4a = 2-9

          7a          = -7

=> a= -1

=> -3 + b =2

           b=5

Vậy đa thức f(x) = (x-3)(x+4)(x2 + 3) - x + 5

Hồ Lê Hà Thương
Xem chi tiết
Tiến Hoàng Minh
Xem chi tiết
Đỗ Tuệ Lâm
23 tháng 2 2022 lúc 22:49

THAM KHẢO:

undefined

undefined

 

Trần Tuấn Hoàng
23 tháng 2 2022 lúc 22:46

Dư mấy vậy bạn?

Đỗ Tuệ Lâm
23 tháng 2 2022 lúc 22:51

sr nó lag mình lm lại 

undefined

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 10:06

2: ĐKXĐ: x<>1

\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)

\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)

f'(x)=0

=>x^2-2x=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

1:

\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)

=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)

f'(x)=0

=>\(\left(x-2\sqrt{2}\right)^2=0\)

=>\(x-2\sqrt{2}=0\)

=>\(x=2\sqrt{2}\)

Hiếu Đinh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 9 2021 lúc 15:34

\(a,f\left(1\right)=3\cdot1^2+1+1=5\\ f\left(-\dfrac{1}{3}\right)=3\cdot\left(-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+1=\dfrac{1}{3}-\dfrac{1}{3}+1=1\\ f\left(\dfrac{2}{3}\right)=3\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{3}+1=\dfrac{4}{3}-\dfrac{2}{3}+1=\dfrac{5}{3}\\ f\left(-2\right)=3\cdot\left(-2\right)^2-2+1=11\\ f\left(-\dfrac{4}{3}\right)=3\cdot\left(-\dfrac{4}{3}\right)^2-\dfrac{4}{3}+1=\dfrac{16}{3}-\dfrac{4}{3}+1=5\)

\(b,f\left(\dfrac{2}{3}\right)=\left|2\cdot\dfrac{2}{3}-9\right|-3=\dfrac{23}{3}-3=\dfrac{14}{3}\\ f\left(-\dfrac{5}{4}\right)=\left|2\cdot\left(-\dfrac{5}{4}\right)-9\right|-3=\dfrac{23}{2}-3=\dfrac{17}{2}\\ f\left(-5\right)=\left|2\left(-5\right)-9\right|-3=19-3=16\\ f\left(4\right)=\left|2\cdot4-9\right|-3=1-3=-2\\ f\left(-\dfrac{3}{8}\right)=\left|2\cdot\left(-\dfrac{3}{8}\right)-9\right|-3=\dfrac{39}{4}-3=\dfrac{27}{4}\)

Nguyễn Hoàng Minh
9 tháng 9 2021 lúc 15:35

\(c,x=0\Rightarrow y=2\cdot0^2-7=-7\\ x=-3\Rightarrow y=2\cdot\left(-3\right)^2-7=11\\ x=-\dfrac{1}{2}\Rightarrow y=2\cdot\left(-\dfrac{1}{2}\right)^2-7=\dfrac{-13}{2}\\ x=\dfrac{2}{3}\Rightarrow y=2\cdot\left(\dfrac{2}{3}\right)^2-7=-\dfrac{55}{9}\)