Tìm n(n∈N) để mỗi phép chia sau đây là phép chia hết x 5 - 2 x 3 - x : 7 x n
Tìm n để mỗi phép chia sau đây là phép chia hết: (x5-x-2x3):(7xn)
Tìm n(n∈N) để mỗi phép chia sau đây là phép chia hết 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 : 2 x n y n
Vì 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 chia hết cho 2 x n y n nên mỗi hạng tử của đa thức đều chia hết cho 2 x n y n
Suy ra: x 2 y 2 chia hết cho 2 x n y n trong đó x 2 y 2 là hạng tử có số mũ nhỏ nhất).
Suy ra: n ≤ 2
Vì n ∈ N ⇒ n = 0; n = 1; n = 2
Vậy với n ∈ {0; 1; 2} thì 5 x 5 y 5 - 2 x 3 y 3 - x 2 y 2 : 2 x n y n
Tìm n để mỗi phép chia sau là phép chia hết (n là số tự nhiên) 5 x 3 - 7 x 2 + x : 3 x n
Vì đa thức 5 x 3 - 7 x 2 + x chia hết cho 3 x n nên mỗi hạng tử của đa thức chia hết cho x n
=> hạng tử x – có số mũ nhỏ nhất của đa thức chia hết cho 3 x n
Do đó, x : x n ⇒ 0 ≤ x ≤ 1 . Vậy n ∈ {0; 1}
Tìm n \(\left(n\in\mathbb{N}\right)\) để mỗi phép chia sau đây là phép chia hết
a) \(\left(x^5-2x^3-x\right):7x^n\)
b) \(\left(5x^5y^5-2x^3y^3-x^2y^2\right):2x^ny^n\)
a: Để đây là phép chia hết thì 1-n>0
hay n<=1
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: Để đây là phép chia hết thì 2-n>=0
hay n<=2
mà n là số tự nhiên
nên \(n\in\left\{0;1;2\right\}\)
Tìm n \(\left(n\in N\right)\)để mỗi phép chia sau đây là phép chia hết :
a) \(\left(x^5-2x^3-x\right):7x^n\)
b) \(\left(5x^5y^5-2x^3y^3-x^2y^2\right):2x^ny^n\)
\(HELPME\)
tìm số tự nhiên để mỗi phép chia sau là phép chia hết:
xnyn+1= x2y5
CHÚ Ý: TRÌNH BÀY ĐẦY ĐỦ
\(x^ny^{n+1}:x^2y^5=x^{n-2}.y^{n-4}\)
Để \(x^ny^{n+1}⋮x^2y^5\) thì \(\hept{\begin{cases}n-2\ge0\\n-4\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}n\ge2\\n\ge4\end{cases}}\Leftrightarrow n\ge4.\)
Tìm n thuộc N để mỗi phép chia sau là phép chia hết
a)\(35x^9y^n:\left(-7x^7y^2\right)\)
b)\(\left(5x^3-7x^2+x\right):3x^n\)
c)\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n\)
a) \(35x^9y^n=5.\left(7x^9y^n\right)\)
Để \(35x^9y^n⋮\left(-7x^7y^2\right)\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
b) \(5x^3-7x^2+x=3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)\)
Để \(\left(5x^3-7x^2+x\right)⋮3x^n\)
\(\Rightarrow3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)⋮3x^n\)
\(\Rightarrow n\in\left\{0;1\right\}\)
1.tìm n để mỗi phép chia sau là phép chia hết:
a.(5x^3-7x^2+x):3x^n
b.(13x^4y^3-5x^3y^3+6x^2y^2):5x^ny^
2.làm tính chia: (x^3+8y^3):(x+2y)
Tìm n (n thuộc N) để mỗi phép chia sau đây là phép chia hết
a, (x5 _ 2x3 _ x) : 7xn
b, (5x5y5 _ 2x3y3 _ x2y2) ; 2xnyn