Bài 3:Cho các số nguyên a,b,c trong đó
a+b=0
Bài 4 Tính giá trị của biểu thức M=ab-ac+b2-bc
Cho các số nguyên a, b, c:
a)Tính giá trị biểu thức: $M=ab-ac+b^2-bc$M=ab−ac+b2−bc trong đó $a+b=0$a+b=0
b)Biết $ab-ac+bc-c^2=-1$ab−ac+bc−c2=−1. Chứng minh a,b là 2 số đối nhau
a = 2;b= (-2);c= 3
Thay : a+b+c=2+(-2)+3
. =[2+(-2)]+3
=0+3=3
B)vì a và b là 2 số đối nhau nên ta có :
a =2;b= (-2) và là 2số đối nhau vì
|-2|=2
Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm).
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm).
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30.
Bài 4: (6,0 điểm).
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng
(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2
Cho số nguyên a ,b,c trong đó a+b=0
Tính giá trị của biểu thức M=ab-ac+b^2-bc
Bài 1: Cho B = x2013−2014x2012+2014x2011−2014x2010+...−2014x2+2014x−1x2013−2014x2012+2014x2011−2014x2010+...−2014x2+2014x−1
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: aba+b=bcb+c=cac+aaba+b=bcb+c=cac+a
Tính giá trị của biểu thức : M=ab+bc+caa2+b2+c2
Bài 1:Cho các số nguyên a,b,c trong đó:
a+b=0
Tính guias trị biểu thức:
M=ab-ac+=b2-bc
Bài 2:tìm số nguyên n sao cho:
n+2 chia hết cho 2n2+5
Cho các số nguyên a,b,c trong đó:a+b=0
Tính giá trị của biểu thức:
M=ab-ac+b2-bc
Làm giúp mk nha!
Cho a, b, c là các số khác 0 thỏa mãn: ab + ac + bc = 0. Tính giá trị biểu thức M = 1/3(ab/c^2 + ac/b^2 + bc/a^2)
Cho các số nguyên a,b,c trong đó:
a+b=0
Tính giá trị biểu thức:
M=ab-ac+b2-bc
Làm chi tiết nha !
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)