Trong 100 000 số nguyên dương đầu tiên, có bao nhiêu số chứa một chữ số 3, một chữ số 4 và một chữ số 5 ?
Trong 100 000 số nguyên dương đầu tiên, có bao nhiêu số chứa một chữ số 3, một chữ số 4 và một chữ số 5 ?
Trong 100 000 số nguyên dương đầu tiên, có \(5\cdot4\cdot3\cdot7\cdot7=2940\) số chứa một chữ số 3, một chữ số 4 và một chữ số 5.
Từ các số 0,1,2,3,4,5,6,7 lập được bao nhiêu số có 6 chữ số đôi một khác nhau sao cho một trong hai chữ số đầu tiên là 3 và chia hết cho 5
Từ các số 0,1,2,3,4,5,6,7 lập được bao nhiêu số có 6 chữ số đôi một khác nhau sao cho một trong hai chữ số đầu tiên là 3 và chia hết cho 5
Số tự nhiên có 6 chữ số có dạng: \(\overline{abcdef}\)
TH1: \(a=3\)
f có 2 cách chọn.
\(\overline{bcde}\) có \(A^4_6\) cách lập.
\(\Rightarrow\) Lập được \(2A^4_6=720\) số tự nhiên thỏa mãn.
TH2: \(b=3\)
Nếu \(f=0\Rightarrow\) a có 6 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(6.A_5^3=360\) số tự nhiên thỏa mãn.
Nếu \(f=5\Rightarrow\) a có 5 cách chọn.
\(\overline{cde}\) có \(A_5^3\) cách lập.
\(\Rightarrow\) Lập được \(5A_5^3=300\) số tự nhiên thỏa mãn.
Vậy lập được \(720+360+300=1380\) số tự nhiên thỏa mãn.
Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3, 4, 5 và chữ số 4 đứng cạnh chữ số 3 và chữ số 5?
A. 1470
B. 750
C. 2940
D. 1500
Đáp án D.
Sắp xếp cụm số 3,4,5 có 2 cách sắp xếp là 345 và 543.
TH1: Cụm 2 số 3,4,5 đứng đầu có: 2.7.6.5 = 240 số thỏa mãn.
TH2: Cụm 3 số 3,4,5 không đứng đầu có 3 cách sắp xếp là x345xx; xx345x; xxx345
3 chữ số còn lại có: 6.6.5 = 180 cách chọn và sắp xếp.
Do đó có 2.3.180 = 1080 số thỏa mãn.
Theo quy tắc cộng có:
420 + 1080 = 1500 số thỏa mãn yêu cầu bài toán
Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3, 4, 5 và chữ số 4 đứng cạnh chữ số 3 và chữ số 5?
A. 1470
. 750
C. 2940
D. 1500
Đáp án D
Sắp xếp cụm số 3,4,5 có 2 cách sắp xếp là 345 và 543
TH1:Cụm 2 số 3,4,5 đứng đầu có:
2.7.6.5 = 240 số thỏa mãn
TH2: Cụm 3 số 3,4,5 không đứng đầu có 3 cách sắp xếp là
x345xx; xx345x; xxx345
3 chữ số còn lại có: 6.6.5 = 180 cách chọn và sắp xếp
Do đó có 2.3.180 = 1080 số thỏa mãn
Theo quy tắc cộng có:
420 + 1080 = 1500 số thỏa mãn yêu cầu bài toán
Cho tập X = {0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập được
bao nhiêu số n gồm 5 chữ số khác nhau đôi một lấy từ
X, biết trong 3 chữ số đầu tiên phải có mặt chữ số 1.
A. 3000
B. 2280
C. 2000
D. 1750
Cho tập X = {0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập được bao nhiêu số n gồm 5 chữ số khác nhau đôi một lấy từ X, biết trong 3 chữ số đầu tiên phải có mặt chữ số 1.
A. 3000
B. 2280
C. 2000
D. 1750
Chọn B.
? TH1: 1 nằm ở vị trí đầu
4 chữ số phía sau có: 7.6.5.4 =840 (cách)
? TH2: 1 không nằm ở đầu
Có 2 cách chọn vị trí cho số 1
Vị trí đầu có 6 cách
3 vị trí còn lại có 6.5.4 = 120 (cách)
Số các số thỏa là: 2.6.120 = 1440
Số cách chọn là: 840 + 1440 = 2280 (cách)
a,Có bao nhiêu số nguyên dương có 10 chữ số ,các chữ số đôi một khác nhau và chia hết cho 11111
b,Có bao nhiêu số nguyên dương có 3 chữ số ,các chữ số đôi một khác nhau và chia hết cho 3
Ờ thì mình không biết chưa nghĩ ra tạm thời bạn hỏi bạn khác nha😅
Từ các chữ số 0, 1, 2, 3, 6, 7 có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau chia hết cho 2 và thỏa mãn điều kiện một trong hai chữ số đầu tiên phải là 7?
A. 55 số
B. 56 số
C. 57 số
D. 66
Đáp án : D
Ta xét hai trường hợp sau:
+) TH1. chọn d có 3 cách,b có 4 cách, c có 3 cách nên có 3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì chọn a có 4 cách, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d khác 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.