Tính số hạng đầu u 1 và công sai d của cấp số cộng ( u n ) u 4 = 10 u 7 = 19
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n n ∈ N * . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó.
A. u 1 = - 8 , d = 10
B. u 1 = - 8 , d = - 10
C. u 1 = 8 , d = 10
D. u 1 = 8 , d = - 10
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n , ( n ∈ ℕ * ) . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 ; d = 10 .
B. u 1 = - 8 ; d = - 10 .
C. u 1 = 8 ; d = 10 .
D. u 1 = 8 ; d = - 10 .
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n , n ∈ ℕ * . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó.
A. u 1 = − 8 ; d = 10
B. u 1 = − 8 ; d = − 10
C. u 1 = 8 ; d = 10
D. u 1 = 8 ; d = − 10
Đáp án C
Ta có: S n = 2 u 1 + n − 1 d n 2 = d n 2 2 + u 1 − d 2 n = 5 n 2 + 3 n ⇒ d 2 = 5 u 1 − d 2 = 3 ⇔ d = 10 u 1 = 8 .
Một cấp số cộng có tổng n số hạng đầu S n được tính theo công thức S n = 5 n 2 + 3 n , ( n ∈ N * ) . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 , d = 10
B. u 1 = - 8 , d = - 10
C. u 1 = 8 , d = 10
D. u 1 = 8 , d = - 10
Một cấp số cộng có tổng n số hạng đầu S n được tính theo công thức S n = 5 n 2 + 3 n , ( n ∈ N * ) . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 , d = 10
B. u 1 = - 8 , d = - 10
C. u 1 = 8 , d = 10
D. u 1 = 8 , d = - 10
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n n ∈ ℕ * . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 ; d = 10
B. u 1 = - 8 ; d = - 10
C. u 1 = 8 ; d = 10
D. u 1 = 8 ; d = - 10
Một cấp số cộng có tổng n số hạng đầu là S n được tính theo công thức S n = 5 n 2 + 3 n , n ∈ ℤ * . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó.
A. u 1 = -8, d = 10
B. u 1 = -8, d = -10
C. u 1 = 8, d = 10
D. u 1 = 8, d = -10
Cho u n là một cấp số cộng có tổng n số hạng đầu tính được theo công thức S n = 5 n 2 + 3 n với n ∈ N * . Số hạng đầu u 1 và công sai d của cấp số cộng đó là
A. u 1 = - 8 d = 10
B. u 1 = - 8 d = - 10
C. u 1 = 8 d = 10
D. u 1 = 8 d = - 10
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Chọn C
- Do công sai và số hạng đầu là d = 1, u 1 = 1 nên đây là tổng của n số tự nhiên đầu tiên là: