Cho tam giác cân ABC có góc B = 120 ° ,AC = 6cm.Tính độ dài đường tròn ngoại tiếp tam giác đó
1.Tính độ dài đường tròn ngoại tiếp
a) 1 lục giác đều có cạnh bằng 4 cm.
b) 1 hình vuông cạnh 4 cm
c) 1 tam giác đều cạnh 6 cm
2. Cho tam giác ABC cân có góc B=120°, AC bằng 6 cm. Tính độ dài đường tròn ngoại tiếp đó
Cho tam giác cân ABC có \(\widehat{B}=120^0,AC=6cm\). Tính độ dài đường tròn ngoại tiếp tam giác đó ?
Tam giác ABC có AB =AC= 3cm; góc A= 120 . Độ dài đường tròn ngoại tiếp tam giác ABC là:
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{3^2+3^2-BC^2}{2\cdot3\cdot3}=-\dfrac{1}{2}\)
=>18-BC^2=-9
=>BC^2=27
=>\(BC=3\sqrt{3}\left(cm\right)\)
\(\dfrac{BC}{sinA}=2R\)
=>\(2\cdot R=3\sqrt{3}:sin120=3\sqrt{3}:\dfrac{1}{2}=6\sqrt{3}\)
=>\(R=3\sqrt{3}\)
Cho tam giác ABC cân tại A có góc BAC =120 độ và cạnh BC=6.Bán kính đường tròn ngoại tiếp tam giác ABC bằng bao nhiêu?
Lời giải:
Ta nhớ lại công thức, trong tam giác $ABC$ có $AB=c, BC=a, CA=b$ thì:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$.
Ứng vào bài toán, với $\sin A=\sin 120=\frac{\sqrt{3}}{2}$ và $a=BC=6$ thì:
$R=\frac{a}{2\sin A}=\frac{6}{2.\frac{\sqrt{3}}{2}}=2\sqrt{3}$
Cho tam giác ABC có góc A bằng 120 độ. AB=3cm, AC=6cm.Tính độ dài đường phân giác AC.
cho tam giác abc có góc a = 120 độ ,ab=3cm,ac=6cm.tính độ dài đường phân giác ad
Cho tam giác ABC cân tại A, AB= 4cm. Góc BAC = 120 độ. Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC?
Gọi đường tròn (O; R) là đường tròn ngoại tiếp tam giác ABC.
Kẻ đường kính AO cắt (O) tại D.
Hai tam giác vuông ABH và ADC có ∠ABH =∠ADC (cùng chắn cung AC) nên chúng đồng dạng.
=>ABAD=AHAC=>ABAD=AHAC
=>AD=AB⋅ACAH=6⋅103=20(cm)=>AD=AB⋅ACAH=6⋅103=20(cm)
Do đó, R=AD2=202=10(cm)
P.s:Ko chắc
Cho tam giác ABC có góc BAC=120 độ, AD là phân giác trong của góc A
CMR: tổng 2 bán kính đường tròn ngoại tiếp tam giác ABD, ADC bằng bán kính đường tròn ngoại tiếp tam giác ABC
cho tam giác ABC có cạnh BC = 137,5 ; góc B = 83 độ ; góc C = 57 độ . tính góc A và bán kính đường tròn ngoại tiếp tam giác ABC ; độ dài cạnh AC , AB