Cho Δ ABC có AD là đường phân giác của góc B A C ^ ( D ∈ BC ) sao cho DB = 2cm, có AB = 3cm, AC = 4cm. Tính độ dài cạnh DC.
Cho Δ ABC có AD là đường phân giác của góc B A C ^ ( D ∈ BC ) sao cho DB = 2cm, có AB = 3cm, AC = 4cm. Tính độ dài cạnh DC.
Áp dụng định lí trên ta có: Δ ABC, AD là đường phân giác của góc B A C ^ ( D ∈ BC )
Ta có DB/AB = DC/AC hay 2/3 = DC /4 ⇒ DC = (2.4)/ 3 = 8/3 = 2,(6 ) ( cm )
1. cho tam giác ABC bất kì , có:AB=4cm, AC=6cm, AD là phân giác góc A
a)tính DB/DC
b)tính DC khi DC=3cm
2. cho tam giác ABC vuông tại A, có AB=3cm,AC=4cm.vẽ đường cao AH(H thuộc BC)
a) tính độ dài BC
b) chứng minh tam giác HBA~HAC
c) chứng minh HA2=HB.HC
d) kẻ đường phân giác AD(D THUỘC BC). TÍNH ĐỘ DÀI DB VÀ DC
Tam giác ABC óc AB= 5cm, AC= 6cm và đường phân giác AD (D∈BC). Biết DB= 3cm, thì độ dài DC là:
A. 4cm B. 2cm C. 3,5cm D. Kết quả khác
cho tam giác abc có độ dài 3 cạnh AB=3cm, AC=4cm, BC=5cm. tia phân giác của góc a cắt bc tại d. từ d kẻ các đường thẳng song song với ab và ac, chúng cắt ac và ab theo thứ tự f và e a. tứ giác aebf là hình gì? vì sao? b.tính db và dc c. chứng minh af/ab+ af/ac =1 d. gọi O là giao điểm của ad và ce. từ O kẻ đoảng thẳng song song với ac và ab lần lượt tại h và k . chứng minh oh = ok
a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
mà AD là phân giác
nên AEDF là hình thoi
mà \(\widehat{EAF}=90^0\)
nên AEDF là hình vuông
b: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{5}{7}\)
Do đó: DB=15/7(cm); DC=20/7(cm)
Vẽ hình(tự vẽ nha)
a) Ta có: \(BC^2\)=\(5^2=25\)
\(AB^2+AC^2=3^2+4^2=9+16=25\)
⇒\(AB^2+AC^2=BC^2\)
⇒Δ ABC vuông tại A (theo định lí Py-ta -go đảo)
⇒BA⊥AC
Mà DE//AC(gt);DF//AB(gt)
⇒DE⊥BA;DF⊥AC(t/c)
Xét tứ giác AEDF có \(\widehat{AFD}=90^o\left(DF\perp AC\right)\); \(\widehat{BAC}=90^o\left(BA\perp AC\right);\widehat{AED}=90^{o^{ }}\left(DE\perp BA\right)\);AD là p/g \(\widehat{BAC}\)
⇒Tứ giác AEDF là hình vuông (d/h)
b) Xét ΔABC có AD là tia phân giác \(\widehat{BAC}\),theo t/c ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)⇒\(\dfrac{DC}{AC}=\dfrac{BD}{AB}\)hay\(\dfrac{DC}{4}=\dfrac{BD}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{DC}{4}=\dfrac{BD}{3}\)=\(\dfrac{DC+BD}{4+3}=\dfrac{BC}{7}=\dfrac{5}{7}\)
\(\left\{{}\begin{matrix}DC=4.\dfrac{5}{7}=\dfrac{20}{7}\left(cm\right)\\BD=BC-DC=5-\dfrac{20}{7}=\dfrac{15}{7}\left(cm\right)\end{matrix}\right.\)
Bạn xem lại có phải chép sai đề không?,ở chỗ "tứ giác aebf là hình gì" và chỗ "af/ab+af/ab=1",và câu d có gì đó thiếu thiếu.Mk đã sửa lại câu a,vì như vậy mới ra tứ giác.
GT ΔABC ( GÓC A=90 độ), AB=3cm, AC=4cm, AD là đường phân giác của góc A (D ∈ BC) AH ⊥ BC, DE ⊥ AB (E ∈ AB), DF ⊥ AC ( F ∈ AC)
KL
a) tính DB,DC =? b) tính Sadh=? c) Tứ giác AEDF là hình gì? Vì sao?
a. ta có: AD là phân giác góc A
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
\(\Leftrightarrow\dfrac{3}{4}=\dfrac{BC-DC}{DC}\)
\(\Leftrightarrow\dfrac{3}{4}=\dfrac{5}{DC}-1\)
\(\Leftrightarrow\dfrac{7}{4}=\dfrac{5}{DC}\)
\(\Leftrightarrow7DC=20\Leftrightarrow DC=\dfrac{20}{7}\)
\(DB=BC-DC=5-\dfrac{20}{7}=\dfrac{15}{7}\)
b. ta có:\(AH.BC=AB.AC\)
\(\Leftrightarrow5AH=12\Leftrightarrow AH=\dfrac{12}{5}\)
áp dụng định lý pitago vào tam giác vuông ABH:
\(\Rightarrow BH=\sqrt{3^2-\left(\dfrac{12}{5}\right)^2}=\dfrac{9}{5}\)
HD=BD - BH = \(\dfrac{15}{7}-\dfrac{9}{5}=\dfrac{8}{5}\)
\(S_{ADH}=\dfrac{1}{2}.AH.HD=\dfrac{1}{2}.\dfrac{12}{5}.\dfrac{8}{5}=\dfrac{48}{25}cm^2\)
c. tứ giác AEDF là hình chữ nhật vì có 3 góc vuông
Cho tam giác ABC vuông tại A , có AB = 3cm ; AC = 4cm. Vẽ đường cao AH (H thuộc BC) a) Tính độ dài BC . b) Chứng minh tam giác HBA đồng dạng với tam giác HAC c) Chứng minh HA2=HB. HC d) Kẻ đường phân giác AD (D thuộc BC ) . tính các độ dài DB và DC ?
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
cho ΔABC vuông tại A có AB=3cm, AC=4cm. Trên cạnh AB lấy điểm M sao cho AM=1,2cm. Kẻ MN // BC (N∈AC)
a, tính BC
B, Tính MN
c, vẽ AD là đường phân giác của Δ. tính BD
d, tính DC
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5(cm)
b: Xét ΔABC có MN//BC
nên \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)
=>\(\dfrac{MN}{5}=\dfrac{1.2}{3}=\dfrac{2}{5}\)
=>MN=2(cm)
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
=>\(\dfrac{BD}{3}=\dfrac{5}{7};\dfrac{CD}{4}=\dfrac{5}{7}\)
\(\dfrac{BD}{3}=\dfrac{5}{7}\)
=>\(BD=\dfrac{5}{7}\cdot3=\dfrac{15}{7}\left(cm\right)\)
d: \(\dfrac{CD}{4}=\dfrac{5}{7}\)
=>\(CD=\dfrac{5}{7}\cdot4=\dfrac{20}{7}\left(cm\right)\)
Cho tam giác ABC vuông tại A, có AB=3cm,AC=4cm. Kẻ đường phân giác BD của góc ABC.
a) Tính BC, AD, DC
b) Trên BC lấy điểm E sao cho CE=2cm. CM tam giác CED ~ tam giác CAB
c) Chứng minh ED=AD
a) áp dụng định lí pitago vào tam giác abc được ab2 +ac2=bc2 suy ra bc2= 32+42=25 suy ra bc=5
có bd là phân giác góc abc nên ab/ad=bc/dc
dùng tính chất dãy tỉ số bằng nhau ta có ab/ad=bc/dc=(ab+bc)/(ad+dc)=(3+5)/4=2
nên ad=ab/2=3/2
dc=bc/2=5/2
b) dựa vào số đo độ đài cm được ec/ac=dc/bc
xét tam giác abc vuông và tam giác edc vuông có góc c chung và ea/ac=dc/bc nên suy ra 2 tam giác đó đồng dạng
c) tg abc và tg edc đồng dạng suy ra de vuông góc với bc
bd là phân giác abc có de vuông góc với bc, da vuông góc với ab nên suy ra de=da (tính châts này đã học ở lớp 7)
Cho tam giác ABC biết AB=4cm, AC= 6cm và AD là đường phân giác của góc A. a) tính DB/dc b) tính DB khi DC=3cm
amXét \(\Delta ABC\)có AD là tia phân giác của \(\widehat{A}\)
Áp dụng tính chất của đường phân giác ,ta có:
\(\frac{DB}{DC}\)= \(\frac{AB}{AC}\)=\(\frac{4}{6}\)=\(\frac{2}{3}\)
b,theo câu a ta có :
\(\frac{DB}{DC}\)=\(\frac{2}{3}\)\(\Leftrightarrow\frac{DB}{3}\)=\(\frac{2}{3}\)
\(\Leftrightarrow DB=\frac{2.3}{3}\)
\(\Leftrightarrow DB=2\)