Hệ số góc của đường thẳng Δ: 2x - 3y - 3 = 0 là:
A. k = - 2 3
B. k = 2 3
C. k = 2
D. k = 3 2
1.
Phương trình đường thẳng có dạng:
\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)
2.
Do d song song \(\Delta\) nên nhận \(\left(2;-3\right)\) là 1 vtpt
Phương trình: \(2\left(x-1\right)-3\left(y-1\right)=0\Leftrightarrow2x-3y+1=0\)
3.
Do đường thẳng vuông góc d nên nhận \(\left(3;4\right)\) là 1vtpt
\(3\left(x-2\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-18=0\)
Lập phương trình thanh số, phương trình tổng quát của đường thẳng Δ biết: d. Δ đi qua D(2; 5) và E(3; 1)
e. Δ đi qua G(2; 5) và song song với đường thẳng d: 2x-3y-3 = 0
g. Δ đi qua H(2; 5) và vuông góc với đường thẳng d: x + 3y + 2 = 0
viết phương trình đường thẳng Δ trong các trường hợp sau:
a) đi qua A(3;2) ; B(-1;-5) ; M(-3;1) ; N(1;-6)
b) đi qua A(3;-1) và song song d: 2x+3y-1=0
c) đi qua M(3;2) và vecto n=(2;2)
d) đi qua A(1;1) và có hệ số góc k=2
đường thẳng Δ có vecto chỉ phương \(\overrightarrow{u}\)=(-1;\(\sqrt{3}\)) . hệ số góc của Δ là:
A. k=\(\sqrt{3}\) B. k=-3 C. k=-\(\sqrt{3}\) D. =3
giải chi tiết giúp mik nha
CHỌN C vì :
Hệ số góc của đường thẳng d có vectơ chỉ phương u→ = (-1; \(\sqrt{3}\)) là:
\(K=\dfrac{U_2}{U_1}=\dfrac{\sqrt{3}}{-1}=-\sqrt{3}\)
\(=>C.K=-\sqrt{3}\)
Hệ số góc của `\Delta` là: `k=[u_2]/[u_1]=\sqrt{3}/[-1]=-\sqrt{3}`
`->\bb C`
Lập phương trình tổng quát của đường thẳng Δ trong mỗi trường hợp sau:
a) Δ đi qua M(–5; –8) và có hệ số góc k = –3;
b) Δ đi qua hai điểm A(2; 1) và B(–4; 5).
a) Phương trình đường thẳng Δ đi qua M(–5; –8) và có hệ số góc k = –3 là:
y = –3.(x + 5) – 8 ⇔ 3x + y + 23 = 0.
b) Ta có: A(2; 1), B(–4; 5) ⇒
Δ đi qua hai điểm A(2; 1) và B(–4; 5)
⇒ Δ nhận là một vtcp
⇒ Δ nhận là một vtpt.
Phương trình tổng quát của đường thẳng Δ là:
(Δ) : 4(x – 2) + 6(y -1) = 0
Hay 4x + 6y – 14 = 0 ⇔ 2x + 3y – 7 = 0.
Cho hai đường thẳng: Δ:(m+3)x+3y−2m+3=0,Δ′:2x+2y+2−3m=0. Tìm giá trị của tham số m để:
a, Đường thẳng △ song song với △'
b, Đường thẳng △ cắt đường thẳng △'
a.
Hai đường thẳng song song khi:
\(\dfrac{m+3}{2}=\dfrac{3}{2}\ne\dfrac{-2m+3}{2-3m}\)
\(\Leftrightarrow m=0\)
b.
Hai đường thẳng trùng nhau khi: \(\dfrac{m+3}{2}=\dfrac{3}{2}=\dfrac{-2m+3}{2-3m}\Rightarrow\) ko tồn tại m thỏa mãn
Vậy 2 đường thẳng cắt nhau khi \(m\ne0\)
Phương trình tổng quát của đường thẳng Δ biết Δ đi qua điểm M(-1;2) và có hệ số góc k=3 là:
A. 3x - y - 1 = 0
B. 3x - y - 5 = 0
C. x - 3y + 5 = 0.
D. 3x - y + 5 = 0
Chọn D.
Phương trình tổng quát của đường thẳng Δ đi qua điểm M(-1;2) và có hệ số góc k = 3 là: y = 3(x + 1) + 2 ⇔ 3x - y + 5 = 0
Tiếp tuyến Δ của đồ thị hàm số y = 3 x − 2 x + 2 tại điểm có hoành độ x 0 = − 3 . Khi đó Δ có hệ số góc k là
A. k = 9
B. k = 10
C. k = 11
D. k = 8
Đáp án D
Ta có: y ' = 8 x + 2 2 ⇒ k 0 = y ' − 3 = 8.
Bài 1: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua đường thẳng Δ, với:
a, d: 2x-y+1=0, Δ: 3x-4y+2=0
b, d: x-2y+4=0, Δ: 2x+y-2=0
c, d: x+y-1=0, Δ: x-3y+3=0
d, d: 2x-3y+1=0, Δ: 2x-3y-1=0
Bài 2: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua điểm I với:
a, d: 2x-y+1=0, I(2;1)
b, d: x-2y+4=0, I(-3;0)
c, d: x+y-1=0, I(0:3)
d, d: 2x-3y+1=0, I trùng O(0;0)
GIÚP EM VỚI Ạ!! EM ĐANG CẦN GẤP LẮM HUHUU T^T EM XIN CẢM ƠN!!!
mỗi bài, mk làm một phần ví dụ cho cậu nhé
nó đối xứng với nhau qua pt đường thẳng đenta,
trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau
lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1) là điểm thuộc đường thẳng (d)
lấy A' đối xứng với A qua (đen ta)
liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)
đồng thời giao điểm của AA' với (đen ta) là trung điểm của AA'
dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)
từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4)
vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)
áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0
gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)
mà I là trung điểm của AA'
chắc chắn cậu sẽ dễ dàng suy ra điểm A'
mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')