Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 14:34

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2019 lúc 13:29

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 4 2017 lúc 11:18

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 6 2019 lúc 14:46

Đáp án B

Trong (ABC) kẻ MN // AC ( N ∈ BC)

Trong (ABD) kẻ MP // AD ( P ∈ BD)

⇒ (MNP)  là mặt phẳng cần tìm

Xét tam giác MNP có MN = MP =NP (= a - m )

⇒ tam giác MNP đều

Mà NP // CD và BG là trung tuyến tam giác BCD

⇒ BG cắt NP tại H là trung điểm NP

MH  là đường cao tam giác MNP

Ta có: PH = a - m 2 và MP = a – m. Áp dụng định lý pitago, ta có: MH = 3 2 a - m

Và NP = a – m

SMNP = MH . NP 2 = 3 4 a - m 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 12 2018 lúc 17:40

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2017 lúc 12:02

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 2 2017 lúc 3:23

Đáp án D

Với tứ diện đều ABCD thì mặt cầu (S) là mặt cầu có tâm trùng với tâm của mặt cầu ngoại tiếp tứ diện ABCD và là trọng tâm của tứ diện đều cạnh a, đồng thời có bán kính R = a 2 4  

Gọi G là trọng tâm của tứ diện ⇒ G A ¯ + G B ¯ + G C ¯ + G D ¯ = 0 ¯  

Ta có: 

T = M A 2 + M B 2 + M C 2 + M D 2 = M G ¯ + G A ¯ 2 + M G ¯ + G B ¯ 2 + M G ¯ + G C ¯ 2 + M G ¯ + G D ¯ 2  

= 4 M G 2 + 2 M G ¯ G A ¯ + G B ¯ + G C ¯ + G D ¯ ⏟ 0 + G A 2 + G B 2 + G C 2 + G D 2 = 4 M G 2 + 4 G A 2  

= 4 a 2 4 2 + 4 a 6 4 2 = 2 a 2  . Vậy T = M A 2 + M B 2 + M C 2 + M D 2 = 2 a 2  

Nguyễn Đức Chung
Xem chi tiết
Huyền Ngọc
Xem chi tiết
Lê Hữu Thành
1 tháng 10 2018 lúc 22:57

giờ muộn rồi chị ạ ko ai giải nữa đâu

mo chi mo ni
1 tháng 10 2018 lúc 23:27

A B C D N E M 1 2

Mk chỉ nêu cách làm bạn tự triển khai nha!

CM \(\Delta ADC=\Delta CBE (g.c.g)\) (*)

(\(\angle C_1=\angle C_2\) cùng phụ với \(\angle ACB\))

\(\Rightarrow AC=CE\Rightarrow \Delta ACE \) cân tại C

\(\Rightarrow AB=CE\)

Từ (*) suy ra:

\(S_{ANEC}=S_{ACE}+S_{ANE}=S_{ABCD}+S_{ANE}\) 

            \(=\dfrac{1}{2}AB^2+\dfrac{1}{2}NA.2AB=\dfrac{1}{2}AB(AB+2NA)\)

Mà \( S_{ANCE}=\dfrac{15}{8} S_{ABCD}\) \(\Rightarrow \dfrac{15}{8}.\dfrac{1}{2} AB^2=\dfrac{1}{2}.AB(2AN+AB)\)

\(\Rightarrow 2AN+AB=\dfrac{15}{8}AB\) \(\Rightarrow \dfrac{NA}{AB}=\dfrac{7}{16}\)

CM \(\Delta NAM \) đồng dạng với \(\Delta CBM\) \((g.g)\)

\(\Rightarrow \dfrac{NA}{AB}=\dfrac{NA}{BC}=\dfrac{AM}{MB}=\dfrac{7}{16}\)

Vậy cần lấy M sao cho \(\dfrac{AM}{MB}=\dfrac{7}{16}\)