Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2019 lúc 4:32

Đáp án A.

Gọi M là trung điểm của BC. Trong mặt phẳng (AA’M), kẻ AH ⊥ A'M.

ΔA’BC cân tại A

ΔAA’M vuông tại A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2017 lúc 4:55

Đáp án D

Phương pháp: Cho hai mặt phẳng (α) và (β) cắt nhau, ta xác định góc giữa (α) và (β) như sau:

- Tìm giao tuyến ∆ của hai mặt phẳng (α) và (β).

-  Tìm trong mỗi mặt phẳng (α), (β) một đường thẳng 𝑎, cùng cùng vuông góc với ∆ và cùng cắt ∆ tại điểm .

- Xác định góc giữa 𝑎𝑏.

Cách giải: Gọi H là trung điểm của A’B’ => AH ⊥ (A’B’C’)

Kẻ HJ, A'K'B'C', (J, K' ∈ B'C'), AK ⊥ BC, (K ∈ BC)

HJ//A'K', A'K'//AK => HJ//AK => H,J,A,K đồng phẳng

Vì 

Ta có: 

=> ((BCC'B');(A'B'C')) = (KJ;HJ)

A ' B ' K ' ^ = 180 0 - 120 0 = 60 0

=> A'K' = A'B' . sin 60 0

Xét ∆B’HC’ : H'C = 

∆AHC’ vuông tại H => AH = HC.tanC’ = HC.tan(AC’;(A’B’C’)) (vì AH(A’B’C’))

Xét hình thang vuông AKJH:

Kẻ 

Vì AK//HJ

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 13:14

Đáp án là A 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 3 2017 lúc 2:06

Chọn A.

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 15:09

a) \(\Delta ABC\) vuông cân tại \(B \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \)

\(CC' = AA' = 2a\)

\(CC' \bot \left( {ABCD} \right) \Rightarrow CC' \bot AC\)

\( \Rightarrow \Delta ACC'\) vuông tại \(C \Rightarrow AC' = \sqrt {A{C^2} + CC{'^2}}  = a\sqrt 6 \)

b) \({S_{ABC{\rm{D}}}} = {S_{A'B'C'C'}} = \frac{1}{2}\left( {A{\rm{D}} + BC} \right).AB = \frac{{3{a^2}}}{2}\)

Gọi \(M\) là trung điểm của \(AD\)

\( \Rightarrow ABCM\) là hình vuông\( \Rightarrow MC = M{\rm{D}} = MA = \frac{1}{2}A{\rm{D}} = a\)

\(\Delta MC{\rm{D}}\) vuông cân tại \(M \Rightarrow C{\rm{D}} = \sqrt {C{M^2} + D{M^2}}  = a\sqrt 2 \)

\(\begin{array}{l}{S_{ABB'A'}} = AB.AA' = 2{a^2}\\{S_{ADD'A'}} = AD.AA' = 4{a^2}\\{S_{BCC'B'}} = BC.CC' = 2{a^2}\\{S_{C{\rm{DD}}'{\rm{C}}'}} = C{\rm{D}}.CC' = 2{a^2}\sqrt 2 \end{array}\)

Tổng diện tích các mặt của hình lăng trụ là:

\(\begin{array}{l}S = {S_{ABC{\rm{D}}}} + {S_{A'B'C'C'}} + {S_{ABB'A'}} + {S_{ADD'A'}} + {S_{BCC'B'}} + {S_{C{\rm{DD}}'{\rm{C}}'}}\\ &  = \frac{{3{a^2}}}{2} + \frac{{3{a^2}}}{2} + 2{a^2} + 4{a^2} + 2{a^2} + 2{a^2}\sqrt 2  = \left( {11 + 2\sqrt 2 } \right){a^2}\end{array}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2019 lúc 9:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 2 2018 lúc 4:40

a

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2018 lúc 15:26

Phương pháp

- Tính chiều cao A 'H .

- Tính thể tích khối lăng trụ  V   =   S A B C . A ' H

Cách giải:

Tam giác ABC vuông cân đỉnh A cạnh AB = AC = 2a nên BC 

Tam giác AHA' vuông tại H  nên

Vậy thể tích khối lăng trụ

Chọn B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2017 lúc 4:52

Đáp án B