Xét khối tứ diện A B C D có cạnh A B = x và các cạnh còn lại đều bằng 2 3 . Tìm x để thể tích khối tứ diện A B C D đạt giá trị lớn nhất
Xét khối tứ diện ABCD có cạnh AD=x và các cạnh còn lại đều bằng a = 2 3 . Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất
A. x = 6
B. x = 14
C. x = 3 2
D. x = 2 3
Đáp án C
Gọi H là trung điểm BC khi đó A H ⊥ B C D H ⊥ B C
SUY RA B C ⊥ A H D và ta có A H = D H = a 3 2
Gọi E là trung điểm của AD do tam giác AHD cân nên
H E ⊥ A D ⇒ H E = A H 2 − A E 2 = 3 a 2 4 − x 2 4
Ta có V A B C D = V B A H D + V C A H D = 1 3 B C . S A H D = 1 3 a 1 2 H E . A D
Lại có
3 a 2 4 − x 2 4 . x = 2. 3 a 2 4 − x 2 4 . x 2 ≤ 3 a 2 4 − x 2 4 + x 2 4 = 3 a 2 4 ⇒ V A B C D ≤ a 3 8 ⇒ V m a x = a 3 8
Dấu bằng xảy ra khi và chỉ khi 3 a 2 = 2 x 2 ⇔ x = a 6 2 = 3 2
Xét khối tứ diện ABCD có cạnh AD = x và các cạnh còn lại đều bằng a = 2 3 Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất
A. x = 6
B. x = 14
C. x = 3 2
D. x = 2 3
Xét khối tứ diện ABCD có cạnh AB= 2 3 và các cạnh còn lại đều bằng x. Tìm x để thể tích khối tứ diện ABCD bằng 2 2
Xét khối tứ diện ABCD có cạnh AD=x và các cạnh còn lại đều bằng 2. Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất.
A. x = 2 3
B. x = 6
C. x = 2
D. x = 3
Đáp án B
Đặt a=2. Gọi H là trung điểm của BC khi đó A H ⊥ B C D H ⊥ B C
Suy ra B C ⊥ A H D và ta có A H = D H = a 3 2
Gọi E là trung điểm của AD do tam giác AHD cân nên
H E ⊥ A D ⇒ H E = A H 2 − A E 2 = 3 a 2 4 − x 2 4
Ta có V A B C D = V B . A H D + V C . A H D
= 1 3 B C . S A H D = 1 3 a . 1 2 H E . A D
Lại có:
3 a 2 4 − x 2 4 . x = 2 3 a 2 4 − x 2 4 . x 2 ≤ 3 a 2 4 − x 2 4 + x 2 4
= 3 a 2 4 ⇒ V A B C D ≤ a 3 8 ⇒ V max = a 3 8 .
Dấu bằng xảy ra 3 a 2 = 2 x 2 ⇔ x = a 6 2 = 6
Cách 2: Nhận xét V max ⇔ S A H D lớn nhất 1 2 A H . D H sin A H D ⏜ = 3 a 2 8 . sin A H D ⏜ ≤ 3 a 2 8
Xét khối tứ diện ABCD có cạnh AB = x, các cạnh còn lại đều bằng . Tìm x để thể tích khối tứ diện ABCD đạt giá trị lớn nhất
A. x = 6
B. x = 14
C. x = 3 2
D. x = 2 3
Xét khối tứ diện SABC có cạnh SA, BC thỏa mãn: S A 2 + S B 2 = 18 và các cạnh còn lại đều bằng 5. Biết thể tích khối tứ diện SABC đạt giá trị lớn nhất có dạng: V m a x = x y 4 ; x , y ∈ ℕ * ; (x,y)=1. Khi đó: x, y thỏa mãn bất đẳng thức nào dưới đây?
Xét khối tứ diện SABC có cạnh SA, BC thỏa mãn: S A 2 + B C 2 = 18 và các cạnh còn lại đều bằng 5. Biết thể tích khối tứ diện SABC đạt giá trị lớn nhất có dạng: V m a x = x y 4 ; x , y ∈ ℕ * ; x , y = 1. Khi đó: x, y thỏa mãn bất đẳng thức nào dưới đây?
A. x + y 2 − x y > 4550.
B. x y + 2 x y > 2550.
C. x 2 − x y + y 2 < 5240.
D. x 3 − y > 19602.
Cho tứ diện ABCD có \(AB=\dfrac{a\sqrt{3}}{2}\) và các cạnh còn lại đều bằng \(a\) . Biết rằng bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng \(\dfrac{a\sqrt{m}}{n}\) với \(m,n\in N\)*; \(m\le15\). Tổng \(T=m+n\) bằng?
A. 15 B. 17 C. 19 D. 21
Có gì cho mình xin công thức chung để tính bán kính mặt cầu ngoại tiếp tứ diện luôn ạ, mình cảm ơn nhiều♥
Hóng ké ai đó giải bài nì, ko thì toi xách mông đi hỏi, ngu hình quá :(
Gọi M là trung điểm AB, do \(DA=DB=DC=a\Rightarrow\) hình chiếu vuông góc H của D lên (ABC) trùng tâm đường tròn ngoại tiếp ABC, hay tâm I của mặt cầu ngoại tiếp tứ diện thuộc đường thẳng DH
Tam giác ABC cân tại C, qua trung điểm N của AC kẻ trung trực cắt CM tại H
\(AM=\dfrac{a\sqrt{3}}{4}\Rightarrow CM=\dfrac{a\sqrt{13}}{4}\) ; \(CH=\dfrac{CN}{cos\widehat{ACM}}=CN.\dfrac{CA}{CM}=\dfrac{2a\sqrt{13}}{13}\)
Gọi P là trung điểm CD, do tam giác CDM cân tại M \(\Rightarrow\) CM là trung trực CD
Gọi I là giao điểm PM và DH \(\Rightarrow\) I là tâm mặt cầu ngoại tiếp tứ diện
\(MH=CM-CH=\dfrac{5a\sqrt{13}}{52}\) ; \(MP=\sqrt{MC^2-CP^2}=\dfrac{3a}{4}\)
\(DH=\sqrt{MD^2-MH^2}=\sqrt{MC^2-MH^2}=\dfrac{3a\sqrt{13}}{13}\)
\(IH=MH.tan\widehat{CMP}=MH.\dfrac{CP}{MP}=\dfrac{5a\sqrt{13}}{78}\)
\(R=ID=DH-IH=\dfrac{a\sqrt{13}}{6}\)
Xét khối tứ diện ABCD,AB= x, các cạnh còn lại bằng 2 3 . Tìm x để thể tích khối tứ diện ABCD lớn nhất
A. x = 6
B. x = 2 2
C. x = 14
D. x = 3 2