Chương 2: MẶT NÓN, MẶT TRỤ, MẶT CẦU

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
AllesKlar

Cho tứ diện ABCD có \(AB=\dfrac{a\sqrt{3}}{2}\) và các cạnh còn lại đều bằng \(a\) . Biết rằng bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng \(\dfrac{a\sqrt{m}}{n}\) với \(m,n\in N\)*; \(m\le15\). Tổng \(T=m+n\) bằng?

A. 15           B. 17            C. 19               D. 21

Có gì cho mình xin công thức chung để tính bán kính mặt cầu ngoại tiếp tứ diện luôn ạ, mình cảm ơn nhiều♥

undefined

Hoàng Tử Hà
13 tháng 4 2022 lúc 0:08

Hóng ké ai đó giải bài nì, ko thì toi xách mông đi hỏi, ngu hình quá :(

Nguyễn Việt Lâm
13 tháng 4 2022 lúc 13:03

Gọi M là trung điểm AB, do \(DA=DB=DC=a\Rightarrow\) hình chiếu vuông góc H của D lên (ABC) trùng tâm đường tròn ngoại tiếp ABC, hay tâm I của mặt cầu ngoại tiếp tứ diện thuộc đường thẳng DH

Tam giác ABC cân tại C, qua trung điểm N của AC kẻ trung trực cắt CM tại H

\(AM=\dfrac{a\sqrt{3}}{4}\Rightarrow CM=\dfrac{a\sqrt{13}}{4}\) ; \(CH=\dfrac{CN}{cos\widehat{ACM}}=CN.\dfrac{CA}{CM}=\dfrac{2a\sqrt{13}}{13}\)

Gọi P là trung điểm CD, do tam giác CDM cân tại M \(\Rightarrow\) CM là trung trực CD

Gọi I là giao điểm PM và DH \(\Rightarrow\) I là tâm mặt cầu ngoại tiếp tứ diện

\(MH=CM-CH=\dfrac{5a\sqrt{13}}{52}\) ; \(MP=\sqrt{MC^2-CP^2}=\dfrac{3a}{4}\)

\(DH=\sqrt{MD^2-MH^2}=\sqrt{MC^2-MH^2}=\dfrac{3a\sqrt{13}}{13}\)

\(IH=MH.tan\widehat{CMP}=MH.\dfrac{CP}{MP}=\dfrac{5a\sqrt{13}}{78}\)

\(R=ID=DH-IH=\dfrac{a\sqrt{13}}{6}\)

Nguyễn Việt Lâm
13 tháng 4 2022 lúc 13:04

undefined

undefined


Các câu hỏi tương tự
Phan thu trang
Xem chi tiết
Hoa Tran
Xem chi tiết
Phương Anh
Xem chi tiết
Minh Cương
Xem chi tiết
nguyễn mạnh tuấn
Xem chi tiết
Lương Ngọc Thuyết
Xem chi tiết
Minh Ole
Xem chi tiết
Nguyễn thị Phụng
Xem chi tiết
Xu Xuu
Xem chi tiết