Cho a+b+c = 0 . Hãy viết đa thức 2(a^4+b^4+c^4) dưới dạng bình phương của một đa thức.
Tìm các hệ số nguyên a b c d sao cho đa thức x^4+ax^3+bx^2-8x+4 viết được dưới dạng bình phương của đa thức x^2+cx+d
Câu hỏi của Trà My - Toán lớp 8 - Học toán với OnlineMath
Viết đa thức dưới dạng bình phương của một tam thức bậc hai a) x^4-2x^3-3x^2+4x+4
b) x^4+2x^3-23x^2-24x+144
\(a)x^4-2x^3-3x^2+4x+4=(x^4-x^3-2x^2)-\left(x^3-x^2-2x\right)-\left(2x^2-2x-4\right)\)
\(=\left(x^2-x-2\right)\left(x^2-x-2\right)=\left(x^2-x-2\right)^2\)
\(b)x^4+2x^3-23x^2-24x+144=\left(x^4+x^3-12x^2\right)+\left(x^3+x^2-12x\right)-\left(12x^2+12x-144\right)\)
\(=\left(x^2+x-12\right)\left(x^2+x-12\right)=\left(x^2+x-12\right)^2\)
Tìm các hệ số nguyên a,b,c,d sao cho đa thức x4 +ax3 + bx2 -8x + 4 viết được dưới dạng bình phương của đa thức x2 + cx +d.
ai giúp mik với!!!
Ta có \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\).
Hệ số tự do của \(\left(x^2+cx+d\right)^2\) là \(d^2\).
Vì vậy \(d^2=4\Leftrightarrow d=\pm2\).
Với \(d=2\) ta có:
\(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+2\right)^2\).
Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) ta có:
\(\left(x^2+cx+2\right)^2=x^4+c^2x^2+4+2cx^3+4cx+4x^2\)\(=x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\).
So sánh \(x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\) với \(x^4+ax^3+bx^2-8x+4\) ta được:
\(\hept{\begin{cases}2c=a\\c^2+4=b\\4c=-8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}c=-2\\a=-4\\b=8\end{cases}}\).
Tương tự cho trường hợp \(d=-2\).
viết các đa thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu
a) 1/4 . a^2 + 2 . a . b + 4 . b^4
b) 25 + 10 . x + x ^ 2
c) 1/9 - 2/3 . y^4 + y^8
a. Đề đúng phải là \(\frac{1}{4}a^2+2ab^2+4b^4\)hoặc \(\frac{1}{4}a^2+2ab+4b^2\)
Ở đây mình giải trường hợp 2, bạn dựa theo để giải trường hợp 1 nhé :))
\(\frac{1}{4}a^2+2ab+4b^2\)
\(=\left(\frac{1}{2}a\right)^2+2ab+\left(2b\right)^2\)
\(=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b+\left(2b\right)^2\)
\(=\left(\frac{1}{2}a+2b\right)^2\)
b. \(25+10x+x^2\)
\(=x^2+2.x.5+5^2\)
\(=\left(x+5\right)^2\)
c. \(\frac{1}{9}-\frac{2}{3}y^4+y^8\)
\(=\left(y^4\right)^2-2.y^4.\frac{1}{3}+\left(\frac{1}{3}\right)^2\)
\(=\left(y^4-\frac{1}{3}\right)^2\)
1.Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu a)1/4a^2+2ab+4b^4. b)1/9-1/3y^4+y^8
a:Sửa đề: \(\dfrac{1}{4}a^2+2ab+4b^2\)
\(=\left(\dfrac{1}{2}a\right)^2+2\cdot\dfrac{1}{2}a\cdot2b+\left(2b\right)^2\)
\(=\left(\dfrac{1}{2}a+2b\right)^2\)
b: Sửa đề:\(y^4-\dfrac{1}{3}y^4+\dfrac{1}{36}\)
\(=y^8-2\cdot y^4\cdot\dfrac{1}{6}+\dfrac{1}{36}\)
\(=\left(y^4-\dfrac{1}{6}\right)^2\)
TÌm hệ số nguyên a,b,c,d sao cho đa thức x4+ax2+bx2-8x+4 viết được dưới dạng bình phương của đa thức x2-cx+d
Xác định các hệ số a,b sao cho các đa thức sau viết được dưới dạng bình phương của một đa thức nào đó
a) x4 + 2x3 + 3x2 + ax + b
b) x4 + ax3 + bx2 - 8x + 1
Câu hỏi của Khánh Ngọc Cute - Toán lớp 8 | Học trực tuyến
làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)
Xác định các hệ số a,b sao cho các đa thức sau viết được dưới dạng bình phương của một đa thức nào đó
a) x4 + 2x3 + 3x2 + ax + b
b) x4 + ax3 + bx2 - 8x + 1
a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)
\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)
Áp dụng hệ số bất định, ta có :
\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)
Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)
b/ Tương tự
hãy viết đa thức sau dưới dạng bình phương mộthiệu
4x2-6xy+\(\dfrac{9}{4}\)y2
\(=\left(2x+\dfrac{3}{2}y\right)^2\)
\(4x^2-6xy+\dfrac{9}{4}y^2=\left(2x\right)^2-2.2x.\dfrac{3}{2}y+\left(\dfrac{3}{2}y\right)^2=\left(2x-\dfrac{3}{2}y\right)^2\)
\(4x^2-6xy+\dfrac{9}{4}y^2=\left(2x-\dfrac{3}{2}y\right)^2\)