Cho hình lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân, A B = A C = α , B A C ^ = 120 ° , B B ' = α , I
là trung điểm của CC' Gọi α là góc giữa hai mặt phẳng (ABC) và (AB'I). Tính cos α
Cho hình lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại A, mặt bên BCC'B' là hình vuông cạnh 2 α . Thể tích của khối lăng trụ ABCA'B'C' bằng
Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân, AB = AC = a, BAC = 120 0 , BB' = a, I là trung điểm CC'. Gọi ( α ) là góc giữa hai mặt phẳng (ABC) và (AB'I). Tính cos α
Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân, AB = AC = a, BAC = 120 ° BB' = a, I là trung điểm CC'. Gọi α là góc giữa hai mặt phẳng (ABC) và (AB'I). Tính cos α
A. c o s α = 3 10
B. c o s α = 3 10
C. c o s α = 3 10
D. c o s α = 3 5
cho hình lăng trụ đứng ABCA'B'C' có đáy tam giác ABC vuông cân tại A, BC=a, góc giữa BC' và đáy 45°. tính thể tích ABCA'B'C'
Cho lăng trụ đứng ABCA'B'C' có đáy là tam giác vuông cân tại A với AB = AC = a, A'B tạo với đáy 1 góc α biết tanα = 2
a, Tính (A'B; (BCC'B'))
b, Tính (C'B; (A'B'BA))
\(A'A\perp\left(ABC\right)\) theo giả thiết \(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và đáy
\(\Rightarrow tan\widehat{A'BA}=2\Rightarrow A'A=AB.tan\widehat{A'BA}=2a\)
a.
Gọi D' là trung điểm B'C' \(\Rightarrow A'D'\perp B'C'\) (đáy là tam giác vuông cân)
\(\Rightarrow A'D'\perp\left(BCC'B'\right)\Rightarrow\widehat{A'BD'}\) là góc giữa A'B và (BCC'B')
\(A'B=\sqrt{AB^2+A'A^2}=a\sqrt{5}\)
\(A'D'=\dfrac{1}{2}B'C'=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow sin\widehat{A'BD'}=\dfrac{A'D'}{A'B}=\dfrac{\sqrt{10}}{10}\Rightarrow\widehat{A'BD'}\approx18^026'\)
b.
\(\left\{{}\begin{matrix}A'C'\perp A'B'\left(gt\right)\\A'A\perp\left(A'B'C'\right)\Rightarrow A'A\perp A'C'\end{matrix}\right.\)
\(\Rightarrow A'C'\perp\left(ABB'A'\right)\Rightarrow\widehat{C'BA'}\) là góc giữa C'B và (ABB'A')
\(tan\widehat{C'BA'}=\dfrac{A'C'}{A'B}=\dfrac{a}{a\sqrt{5}}=\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow\widehat{C'BA'}\approx24^06'\)
Cho hình lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại A, mặt bên BCC'B' là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ
A. V = a 3
B. V = a 3 2
C. V = 2 a 3 3
D. V = 2 a 3
cho hình lăng trụ đứng ABCA'B'C' có đáy là tam giác cân tại A, AB=a, góc BAC=120°. góc giữa (A'BC) và (ABC)=60°. tính VABCA'B'C'
Cho khối lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân với AB=AC=a, góc B A C ^ = 120 ° . Mặt phẳng (A'BC) tạo với đáy một góc bằng 60 ° . Thể tích của khối lăng trụ ABCA'B'C' là
A. 3 a 3 8
B. 9 a 3 8
C. a 3 8
D. 3 a 3 4
Cho lăng trụ đứng ABCA'B'C' có đáy là tam giác vuông cân tại A với AB = AC = a, A'B tạo với đáy 1 góc α biết tanα = 2
a, Tính AA'
b, Tính (A'B; (BCC'B'))
c, Tính (C'B; (A'B'BA))