Tổng tất cả các nghiệm của phương trình log 2 3 . 2 x - 1 = 2 x + 1 bằng
A. 3 2
B. 1 2
C. -1
D. 0
Tìm tất cả các nghiệm của phương trình log x + log ( x - 9 ) = 1
A. {10}
B. {9}
C. {1;9}
D. {-1;10}
Tổng tất cả các giá trị nghiệm của phương trình log 3 x 2 + x + 3 = 2 là:
A.-6
B.2
C.3
D. -1
Có tất cả bao nhiêu số nguyên m để phương trình log ( m - x ) = 3 log ( 4 - 2 x - 3 ) có hai nghiệm thực phân biệt.
A. 6.
B. 2.
C. 3.
D. 5.
Câu 1: Tính tổng tất cả các nghiệm của phương trình sin3(\(x-\dfrac{\pi}{4}\)) = \(\sqrt{2}\)sinx trên đoạn [0 ; 2018]
Câu 2: Tính tổng tất cả các nghiệm của phương trình cos2x (tan2x - cos2x) = cos3x - cos2x + 1 trên đoạn [0 ; 43π]
GIÚP MÌNH VỚI!!!
Tính tổng tất cả các nghiệm của phương trình: \(\dfrac{1}{2}\).log2(x+3) = log2(x+1) + x2 - x - 4 + 2\(\sqrt{x+3}\)
ĐKXĐ: \(x>-1\)
Bước quan trọng nhất là tách hàm
\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)
Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)
31. Tổng tất cả các nghiệm của phương trình log(8.5x + 20x ) = x + log 25 bằng ?
Lời giải:
$\log(8.5^x+20^x)=x+\log 25$
$\Rightarrow 8.5^x+20^x=10^{x+\log 25}=10^x.25$
$\Rightarrow \frac{8.5^x+20^x}{10^x}=25$
$\Leftrightarrow \frac{8}{2^x}+2^x=25$
Đặt $2^x=t$ thì $\frac{8}{t}+t=25$
$\Leftrightarrow t^2-25t+8=0$
Dễ thấy PT trên luôn có 2 nghiệm dương $t_1,t_2$ nên kéo theo PT ban đầu có 2 nghiệm $x_1,x_2$
Tổng các nghiệm $x_1+x_2=\log_2(t_1)+\log_2(t_2)=\log_2(t_1t_2)=\log_2(8)=3$
Bài 1 tổng tất cả các nghiệm của phương trình sinx/cosx-1=0 trong đoạn [0;4π]
Bài 2 số vị trí biểu diễn tất cả các nghiệm của phương trình cos2x.tan x=0 trên đường tròn lượng giác là
Tất cả các giá trị của tham số m để phương trình log m x = 2 log x + 1 có nghiệm là
Tổng tất cả các nghiệm của phương trình log 3 7 - 3 x = 2 - x bằng
A. 2
B. 1
C. 7
D. 3
Tổng tất cả các nghiệm của phương trình log 3 7 - 3 x = 2 - x bằng
A.2
B.1
C.7
D.3